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THE ROLE OF THE THALAMUS IN MODULATING PAIN
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The thalamus is one of the structures that receives projections from multiple
ascending pain pathways. The structure is not merely a relay centre but is involved
in processing nociceptive information before transmitting the information to
various parts of the cortex. The thalamic nuclei are involved in the sensory
discriminative and affective motivational components of pain. Generally each group
of nucleus has prominent functions in one component for example ventrobasal
complex in sensory discriminative component and intralaminar nuclei in affective-
motivational component. The thalamus is also part of a network that projects to
the spinal cord dorsal horn and modulates ascending nociceptive information. In
the animal models of neuropathic pain, changes in the biochemistry, gene
expression, thalamic blood flow and response properties of thalamic neurons have
been shown. These studies suggest the important contribution of the thalamus in
modulating pain in normal and neuropathic pain condition.
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Is there a role for the thalamus in modulating pain?

The classic pain pathway as was previously
understood consists of a three-neuron chain that
transmits pain information from the periphery to the
cerebral cortex (1). The first order neuron has its
cell body in the dorsal root ganglion and two axons,
one extending distally to the tissue it innervates while
the other extending proximally to the dorsal horn of
the spinal cord (2). In the dorsal horn, this axon
synapses with the second order neuron which in turn
will cross the spinal cord through the anterior white
commissure and ascends through the lateral
spinothalamic tract to the thalamus. In the thalamus,
the second order neuron synapses with the third order
neuron, which ascends through the internal capsule
and corona radiata to the postcentral gyrus of the
cerebral cortex (1). This pathway is organized such
that within tracts and nuclei up to the cortex,
topological relations are maintained and different
parts of the body are represented in an ordered
arrangement in the postcentral gyrus. This
arrangement is called somatotopy (3).

The pain pathway is now understood to be a

dual system at each level and the sensation of pain
that arrives in the central nervous system is
composed of the sensory discriminative component
of pain (first pain), and the affective-motivational
component of pain (second pain), which is carried
separately (1). In addition, there are also afferents
from the spinal cord to pain-mediating areas of the
brain stem, local modulating circuits in the spinal
cord, and descending pain pathways from the cortex,
hypothalamus, and brain stem to the spinal cord that
make up the descending facilitation and descending
inhibition of pain (4). The spinothalamic pathway
that is thought to be concerned with the sensory
discriminatory qualities of the stimulus originates
primarily from neurons in the neck of the dorsal horn
and terminates within the ventroposterior and
ventrobasal thalamus, which then project upon the
cortex (1). The second pathway (affective-
motivational), which is more extensive, is derived
mainly from lamina 1 neurons of the dorsal horn
that express the neurokinin 1 (NK1) receptor and
terminates within the parabrachial area and
periaqueductal grey. These areas in turn project on
brain areas such as the hypothalamus and amygdala
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that modulate the affective dimensions of pain and
control autonomic activity.

Integration of sensory discriminative,
affective motivational and cognitive-evaluative
components contributes to the pain response in an
individual (5). The sensory discriminative aspects
of pain include quality, location and intensity
processing (6) while affective-emotional component
of pain comprises the unpleasant character of pain
perception (7). The cognitive component is involved
in the attention, anticipation and memory of past
experiences and this component can interact with
the other components giving rise to modulation of
pain (8). Studies have been conducted to investigate
the involvement of supra-spinal structures in pain
modulation (9, 10, 11, 12, 13).

The thalamus is one of the supra-spinal
structures that has been extensively investigated as
it receives projections from multiple ascending
pathways. Spinal lamina I neurons project
extensively to the ventrobasal complex (ventral
posterolateral + ventral posteromedial) and to the
posterior group thalamic nuclei (14, 15, 16). The
nociceptive neurons from the ventrobasal complex
mainly project to the primary somatosensory cortex
and this pathway constitutes the lateral pain system
that plays an important role in the discrimination of
stimuli (6, 17). The affective-motivational aspect of
pain is mediated by the medial pain pathway, which
includes the intralaminar thalamic nuclei (18) and
posterior aspect of ventromedial thalamic nuclei (19)
that project to somatosensory cortex and limbic
structures (20). The deeper spinal lamina (V/VI)
conveys nociceptive messages to the parabrachial
internal lateral nucleus that project mainly to the
paracentral nucleus (PC) or other intralaminar nuclei
(21, 22). The fibers from PC targeted cortical
structures e.g. the lateral orbital, lateral agranular
and the dorsomedial prefrontal areas (23) that have
an important role in cognitive functions, aggressive
behaviour and emotional states (24, 25, 26). Neurons
originated from lamina VII/VIII project to the
medullary reticular formation (27, 28), ventrolateral
periaqueductal (29) and intralaminar thalamic nuclei
(30). There is extensive projection from the
intralaminar nuclei to the cortex, including to the
anterior cingulate cortex, subserving the
motivational aspects of pain (31). These brain
structures including the thalamus are parts of a neural
network that are involved in pain modulation that
require further investigations to understand the
complexity of pain perception.

Electrophysiological studies
The ventral posterolateral  (VPL) thalamic

nucleus is one of the termination sites for the
spinothalamic tract. VPL neurons respond to
innocuous and noxious mechanical stimuli and some
of the neurons respond to visceral nociception e.g.
intraperitoneal injection of bradykinin (32) and
uterine distension (33). Electrophysiological studies
have reported the excitatory responses of neurons
to nociceptive stimulation in (34) other thalamic
nuclei including the intralaminar complex (35),
nucleus submedius (36), posterior complex (37) and
ventromedial thalamus (38). In contrast, nociceptive
inputs inhibit a significant proportion of neuronal
evoked responses in reticular thalamic nucleus (39)
and reticular thalamic (RT) projections to VPL or
ventrobasal complex may serve to modulate the
ascending information and thus, RT has an important
role in processing the sensory information (40).

Studies have shown that VPL nociceptive
neurons have restricted receptive fields and precisely
encode the intensity of noxious stimuli (32, 41) and
these characteristics are consistent with the functions
of lateral pain pathway. The nociceptive neurons in
other nucleus might have a larger receptive field
including the ventromedial nucleus that respond to
noxious mechanical and thermal stimulation from
any part of the body (42). The ventromedial
nociceptive neurons do not respond to innocuous
stimuli and these neurons project to widespread areas
of the neocortex (42). These fibres might be part of
a neural network that is involved in the attentional
reactions and/or the coordination of motor responses
to pain (19, 42). Another thalamic structure, posterior
complex (Po), has a close relationship with the
retroinsular cortex and probably has an important
role in the motivational affective responses of pain
(43). The Po thalamic neurons respond to noxious
mechanical stimuli (37) and electrical tooth pulp
stimulation (44). It is reported that in cats, some of
the neurons have large bilateral receptive field (45)
while another report described that of a smaller
restrictive field in monkeys (37). The different
characteristics of Po neurons might be due to
different species used (46) or due to high sensitivity
of Po neurons to anaesthetics (47, 48).

There is a large amount of evidence that
describe the important contribution of the thalamus
to hyperalgesic (increase painful response to noxious
stimuli) responses associated with peripheral injury.
Studies in rats have shown that following hindpaw
inflammation or peripheral nerve injury, ventrobasal
(Ventral posterolateral plus ventral posteromedial)
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thalamic neurons exhibited lowered thresholds and
enhanced peripherally-evoked responses (49, 50, 51,
9). At the spinal level, some reports have
demonstrated that there were no changes in neural
responses following hind paw inflammation (52) and
peripheral nerve injury (53, 54) and this suggested
that the heightened responses of VPL neurons are
not merely due to peripheral sensitization or changes
at the spinal level.

Another thalamic nucleus that receives
considerable attention is the nucleus submedius
(Sm). The Sm has a close relationship with
ventrolateral orbital cortex (VLO) and
periaqueductal region (55, 56, 57) that forms a part
of descending inhibiting system (58, 59).
Extracellular recordings demonstrated that the Sm
neurons responded to noxious electrical, chemical
stimuli (60), mechanical and thermal stimuli (61).
A few studies have also reported that the Sm neurons
respond to visceral stimulation including colorectal
balloon distension (62; 63) and intraperitoneal
injection of formalin or hypertonic saline (60). The
response to noxious stimuli can be excitatory or
inhibitory (60, 61). The excitatory and inhibitory
evoked responses could be eliminated or depressed
by intravenous administration of morphine and the
effects could be reversed with opioid antagonist,
naloxone (61). The presence of two types of cells,
that is on cells and off cells have been reported in
other region e.g. rostral ventromedulla (64, 65) and
periaqueductal region (66). Reports have shown that
opioid antinociception is mediated by inhibition of
on-cells and excitation of off-cells that activate the
Sm-VLO-PAG pathway that modulates nociceptive
inputs at spinal cord level (61, 67). The modulating
role of Sm is supported by studies that show
electrical stimulation of Sm leads to inhibition of
noxious evoked responses of dorsal horn neurons
(68) and depression of tail-flick reflex in rats (69).

Imaging studies
Noxious stimulation activates the neural pain

pathway and increases the neural activity in certain
areas of the brain and the activity can be indicated
by increases in the regional cerebral blood flow
(CBF) in positron emission tomography (PET) or
blood oxygen level dependent (BOLD) signal in
functional magnetic resonance imaging (fMRI). The
changes in the cerebral blood flow are mediated by
interaction of sympathetic b-receptors, ATP sensitive
potassium channels and the release of nitric oxide
(70). Imaging studies have been widely used to
investigate the haemodynamic of brain responses

to pain in human and animals (10, 11, 12, 71, 72,
73, 74, 75). Investigations on how the brain
structures contribute to the overall pain experience
are being conducted to improve understanding of
nociceptive processing in the central nervous system.
The functional imaging investigation is a reliable
method to determine the pain response in different
brain regions as signal intensity and activated areas
are different during noxious and innocuous
stimulation (76). Furthermore the signal intensity
correlates parametrically with the pain response (77).
The thalamus is one of the areas activated as a
response to noxious stimulation in normal subjects
(78, 79, 80). Application of painful laser stimulation
on human subjects produced greater activation in
the contralateral primary somatosensory cortex and
thalamus (81). Another report has shown the
functional association between medial thalamus and
the anterior cingulated cortex (ACC). Electrical
stimulation of the medial thalamic nuclei produced
an increase in the signal in the anterior cingulated
cortex (ACC) (20) suggesting involvement of the
medial thalamus in affective-motivational
component of pain.

Attention is an aspect of cognitive component
of pain and it is well known that distraction during
painful stimulation reduces the subjective pain
sensation in a subject (82, 83, 84). Attention to a
noxious stimulus e.g. thermal, activate a large neural
network including the prefrontal, posterior parietal,
anterior cingulated cortices and thalamus (85).
Distraction from the thermal stimuli significantly
increased the activation in posterior part of the
insular cortex (86), periaqueductal gray (PAG) and
posterior thalamus (8). Valet et al (2004) (8) has
suggested that the functional interactions between
PAG and the posterior thalamus are likely to be
involved in the network of pain modulation.

Involvement of the thalamus in processing
and modulating nociceptive information in
neuropathic pain has been shown in various imaging
studies. In unstimulated rats (basal) cerebral blood
flow in multiple thalamic nuclei including the VPL,
ventral medial and posterior nuclear group, was
increased in neuropathic rats compared to sham-
operated rats (73) and this finding is consistent with
the spontaneous pain related behaviour exhibited by
the neuropathic rats. It is also interesting to note the
correlation of pain behaviour e.g. mechanical
allodynia, that was maximal for two weeks after the
nerve injury, matched the changes of blood flow in
ventral lateral and VPL, in neuropathic rats (74).
Imaging studies conducted in human supported the
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role of the thalamus in the development of
neuropathic pain (71, 72, 75). Reports demonstrate
an enhanced activity in the medial pain pathway,
including the medial thalamus and anterior insula,
with application of an innocuous thermal stimulus
in human subjects presenting with heat allodynia
(87, 88). The enhanced activity of the medial
thalamus was not seen in subjects who have normal
heat pain (87, 88). A different study reported a
reduction in thalamic signals in patients with chronic
neuropathic pain and this might be related to
alteration in the thalamic blood flow and neural
activity (89). All these observations are different
presentations of the thalamus in neuropathic pain
condition and are suggestive of supraspinal plasticity
involving the thalamus following peripheral injury.

Other studies
It has been observed from

electrophysiological and functional imaging studies
that functional changes occur in the thalamus in
neuropathic pain condition. The important
contribution of the thalamus in neuropathic pain is
also supported by other studies including immuno-
histochemistry studies. The expression of an early
gene, c-fos, is considered as an early marker of long-
term functional changes in the neuronal activity.
Following noxious stimulation, induction of c-fos
expression has been shown in a number of thalamic
nuclei e.g. midline nuclei, intralaminar nuclei,
paraventricular nucleus and VPL (70, 90, 91). The
level of c-fos increased in a few supraspinal regions
including the thalamus, frontal cortex and
periaqueductal gray four days after sciatic nerve
ligation (92). Reorganization of thalamic neurons
can be observed within six hours after ligation of
sciatic nerve with changes in receptive fields evoked
responses to noxious stimuli and the strength of
cross-correlation of firing of the thalamic neurons
(93). Following peripheral nerve injury, biochemical
abnormalities are also reported in the thalamus e.g.
reduced serotonin (5-HT) release in the contralateral
ventrobasal complex (94) that can reduce the
inhibitory input to the spinal cord projections and
thalamic relay neurons (95). This will ultimately lead
to diminish antinociception or even facilitation of
neurons that increases the pain perception.

Studies have shown that NMDA receptors are
involved in the somatosensory and nociceptive
transmission in the thalamus (95, 96).  The NMDA
receptors in VPL are important in the development
and maintenance of hyperalgesia in the rats (97, 98).
Blockade of NMDA receptors in the thalamus

reduced nociceptive transmission in neuropathic (98,
99) and normal rats (100). Although NMDA receptor
subunits have been found in the medial thalamus
(101), its role in mediating nociception in the
structure e.g. Sm, has not been proven (102) and
requires further investigation.

Conclusion

Studies have suggested that the thalamus is
an important structure that mediates different
components of pain: sensory discriminative (lateral
pain pathway) and affective-motivational (medial
pain pathway) components. The thalamus is also
involved in the descending inhibition to modulate
nociceptive inputs at the dorsal horn of the spinal
cord. Changes in the biochemistry, immediate early
gene expression, thalamic blood flow and the
response properties of thalamic neurons have been
demonstrated in neuropathic pain models. These data
indicate that the thalamus has an important role to
play in the modulation of nociception in normal and
neuropathic pain syndrome.
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