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Abstract 
Background:Exerciseplaysasignificantroleinlearningandmemory.Thepresentstudy

focusesonthehippocampalcorticosterone(CORT),interleukin-1beta(IL-1β),glucose,andbrain-
derivedneurotrophicfactor(BDNF)levelsinpreventive,therapeutic,andprotectiveexercisesin
stressfulconditions.

Methods:Fortymaleratswererandomlydividedintofourgroups:thecontrolgroupand
thepreventive,therapeutic,andprotectiveexercisegroups.Thetreadmillrunningwasappliedat
aspeedof20-21m/minandachronicstressof6hours/dayfor21days.Subsequently,thevariables
weremeasuredinthehippocampus.

Results: The findings revealed that the hippocampal CORT levels in the preventive
exercise grouphada significant enhancement compared to the control group. In theprotective
and particularly the therapeutic exercise groups, the hippocampal CORT levels declined.
Furthermore,thehippocampalBDNFlevelsinthepreventiveandthetherapeuticexercisegroups
indicated significantly decreased and increased, respectively, in comparison with the control
group.Inthepreventiveexercisegroup,however,thehippocampalglucoselevelturnedouttobe
substantiallyhigherthanthatinthecontrolgroup.

Conclusion:Itappearsthatthetherapeuticexercisegrouphadthebestexerciseprotocols
for improving the hippocampal memory mediators in the stress conditions. By contrast, the
preventiveexercisegroupcouldnot improve thesemediators thathadbeenalteredbystress. It
is suggested thatexercise time, compared to stress, canbeconsideredasa crucial factor in the
responsivenessofmemorymediators.
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Introduction

The stress conditions have increased in 
societies today. They represent a collection 
of events which begin with a stressor and 
accelerate a response in the body, particularly 
in the brain (1). Therefore, they are one of the 
main factors contributing to the memory deficit 
(2, 3). According to our previous studies, the 
impairment of memory processes has been 

demonstrated by using chronic stress (2,3). 
Based on our other previous documents, exercise 
can be regarded as a beneficial manner in the 
improvement of learning and memory in stress 
conditions and even Alzheimer disease (4–8). 
These studies have confirmed that different 
exercise protocols ameliorate cognitive and 
memory function (4–6). Accordingly, exercise 
could alter brain functions in the stressful 
conditions and neurodegenerative diseases  
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(4–9). It is demonstrated that stress and exercise 
affect the secretion of glucocorticoids hormones 
(corticosterone in rats; CORT) from the adrenal 
glands (2, 10–13). In addition, glucocorticoids 
hormones can change some neuromodulators 
in the brain, such as interleukin-1 beta (IL-1β) 
(14), glucose (15), brain-derived neurotrophic 
factor (BDNF) (16), and other biochemical 
factors. CORT and IL-1β influence memory 
processing and neural plasticity and impair the 
memory consolidation (2, 17). On the other hand, 
BDNF and glucose improve memory (2, 18). 
BDNF has emerged as a major synaptogenesis 
regulator and synaptic plasticity mechanism 
underlying learning and memory in the brain 
(19). It appears that exercise, similar to stress, 
could be involved in regulating the levels of 
memory mediators. Since the effects of different 
exercise protocols on the levels of memory 
mediators in the hippocampus have not been 
fully clarified and the hippocampus is a main 
memory structure that is involved in both 
stress and exercise (20, 21), the present study 
focuses on this area. Stress and exercise can 
alter neurochemistry, plasticity, neurotoxicity, 
neurogenesis, glucocorticoid receptor regulation, 
and neuronal morphology in neuronal circuits of 
hippocampus (DG and CA1- CA4) (3, 22–24). 

In human communities, different exercise 
protocols may be repeatedly observed in 
humans’ lifetime. For example, an exerciser 
might withdraw physical activity under stressful 
conditions (preventive exercise). In other groups, 
exercise might perform during exposure to 
stressor (protective exercise). Even individuals 
may perform an exercise after stress conditions 
to improve the physiologic system of their bodies 
(therapeutic exercise). Hence, the present study 
investigates the effect of preventive, therapeutic, 
and protective exercise (exercise before, after, 
and during chronic stress, respectively) on 
the alteration of BDNF (as the main index of 
neurogenesis and memory), CORT, IL-1β, and 
glucose levels (as accessory biochemical indexes 
of memory) in hippocampus of rats under 
chronic stress. 

Materials and Methods 

Animals

Forty male Wistar rats, with an initial weight 
of 250–300 g, were utilized as experimental 
subjects. The animals were housed under an 
artificial light (12-h light/dark, lights on at 
7:00 a.m) and temperature (22±2◦C) controlled 

condition, with food and water available ad 
libitum. The experiments lasted 42 days. All 
experiments on the animals were approved by 
the Ethics Committee of Isfahan University 
of Medical Science and were performed in 
accordance with National Institute of Health 
Guide for the Care and Use of Laboratory 
Animals (NIH Publications No. 80–23, revised in 
1996).

The animals were randomly divided into 
four groups (n=10 in each group) as follows: the 
control group: the rats were put on the treadmill 
without running for 1 hour/day. The preventive 
exercise group (exercise before stress): the rats 
were exercised for 21 days before applying the 
21-day stress. The therapeutic exercise (exercise 
after stress) group: the rats were under stress 
for 21 days and then were exercised for 21 days. 
The protective exercise (exercise during stress) 
group: the rats had exercise associated with 
chronic stress (4–6). 

Experimental procedures

Stress protocol

The rats were tightly fitted in separate 
flat bottom Plexiglas cylindrical restrainers 
(Razi Rad Co., Tehran, Iran) in medium size 
for the rats with a weight of 250–300 g (5 cm 
in diameter and 20 cm in length) for 6 hours/
day (8:00–14:00) in the chronic stress model 
(2–5). Several holes in the walls of the cylinders 
provided fresh air. In addition, it was not 
possible for the rats to move, and the restriction 
of the locomotion occurred in them. Restraint 
stress was employed as an important common 
stress-inducing model of emotional stress  
(25–27). 

Exercise protocol

In the exercised groups, the animals ran on 
a rodent treadmill (Technic Azma Co., Tabriz, 
Iran). The rats became habituated to treadmill 
running in order to minimise novelty stress 
for three days before the experiments. The 
exercise protocol consisted of 1 hour/day/for 6 
consecutive days at 20–21 m/min and slope of 
0◦ (5). The rats received approximately 0.3 mA 
electric shock at 3 seconds to sparingly promote 
their running from the grid located just behind 
the treadmill (28). After warm-up, the speed 
and the duration of treadmill running were 
kept constant at 20 m/min for 1 hour running 
throughout the exercise period. 
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 Assessment of corticosterone, IL-1ß, BDNF, and 
glucose levels in hippocampus

After decapitation and removal of the 
animals’ brains from their skulls, the hippocampi 
were instantly dissected on dry ice. Each 
hippocampus was separately immersed in 
ProblockTm-50, EDTA free (Gold Bio Co., USA) 
and phosphate buffer solution (PBS buffer, 0.01 
M, pH 7.4). Indeed, this solution contained 
complete protease inhibitor cocktail. The 
hippocampi were homogenised and centrifuged 
in a cooled centrifuge (4°C, 10000 g for 20 min). 
Following that, the supernatant was separated 
and stored at –80°C until the assessment. The 
commercial ELISA kit was utilised to assess the 
corticosterone levels in hippocampus (DRG Co., 
Marburg, Germany). The BDNF levels in the 
homogenated hippocampus were measured by 
the ELISA kit of BDNF (Promega Co., Sweden). 
Additionally, the ELISA kit (Koma biotech Co., 
Korea) was employed to measure the serum IL-
1ß level. The serum glucose level (fed glucose, 
not fast glucose) was measured by the glucose 
oxidase method (Pars Azmun Co., Tehran, Iran).

Measurement of brain and hippocampus 
weights  

At the end of the experiments, after 
removing the brains and the hippocampi from 
the skulls, their weights were measured. 

Data Analysis

All data were analysed by one-way analysis of 
variance (ANOVA) followed by Tukey’s post-hoc 
test for multiple groups. In the current study, the 
values are presented as mean± standard error 
of the mean (SEM), where P<0.05 is considered 
statistically significant. 

Results

 Assessment of serum CORT, BDNF, IL-1ß, and 
glucose levels

There was a significant enhancement 
(P<0.05) in the CORT levels of the preventive 
exercise (exercise before stress) group when 

compared to the control group. Nevertheless, 
the CORT levels substantially decreased in the 
therapeutic exercise (exercise after stress) and 
the protective exercise (exercise during stress) 
groups (P<0.001 and P<0.05, respectively) 
compared to the preventive exercise group 
(Figure 1). Hence, the protective and particularly 
the therapeutic exercises decreased the CORT 
levels more than the preventive exercise. 

Figure1. The comparison of different protocols 
of exercise on the hippocampal 
corticosterone (CORT) levels 
(nmol/L) in the different groups 
(n=10). Results are expressed as 
mean ± SEM (ANOVA test, Tukey’s 
post- hoc test); **P<0.01 when 
compared to the control group; 

ΔP<0.05 and ΔΔΔP<0.001 when 
compared to the preventive exercise 
group.

The BDNF levels of the preventive and the 
therapeutic exercise groups were considerably 
(P<0.01 and P<0.05, respectively) different from 
that of the control group. Moreover, there were 
significant changes regarding the BDNF levels 
between the therapeutic and the preventive 
exercise groups (P<0.001 and P<0.05, 
respectively) compared to the preventive exercise 
group (Figure 2).

The BDNF level showed a significant 
(P<0.01) decrease in the protective exercise 
group compared to the therapeutic exercise 
group (Figure 2).
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Figure2.The comparison of different protocols 
of exercise on the hippocampal BDNF 
levels (pg/ml) in the different groups 
(n=10). Results are expressed as 
mean ± SEM (ANOVA test, Tukey’s 
post- hoc test); *P<0.05, **P<0.01 
when compared to the control group; 

ΔP<0.05 and ΔΔΔP<0.001 when 
compared to the preventive exercise 
group; ΔΔP<0.01 when compared to 
the therapeutic exercise group.

The IL-1ß level did not show any significant 
differences between all groups when they were 
compared to the control group and to each other. 
However, the IL-1ß level decreased more in the 
therapeutic exercise group in comparison with 
the other exercise groups (Figure 3).

Figure3. The comparison of different protocols 
of exercise on the serum IL-1ß levels 
(pg/ml) in the different groups 
(n=10). Results are expressed as 
mean ± SEM (ANOVA test, Tukey’s 
post- hoc test) when compared to the 
control group and together. There 
were not significant differences 
between all groups. 

In the preventive exercise group, the glucose 
level was substantially (P<0.05) higher than that 
in the control group (Figure 4).

As it is shown in Figure 4, the glucose levels 
in the therapeutic and the protective exercise 
groups were noticeably (P<0.01 in both of them) 
lower than that in the preventive exercise group 
(Figure 4).

Figure4.The comparison of different protocols 
of exercise on the hippocampal 
glucose levels (mg/Dl) in the 
different groups (n=10). Results are 
expressed as mean ± SEM (ANOVA 
test, Tukey’s post- hoc test); *P<0.05 
when compared to the control group; 
ΔΔP<0. 01 when compared to the 
preventive exercise group. 

Correlations between the behavioral test and the 
biochemical parameters

In our previous studies, memory was 
evaluated by the passive avoidance test in the 
preventive, therapeutic, and protective exercise 
groups (4, 6). The findings of the present study 
did not indicate any significant correlations 
between the hippocampal CORT, BDNF, IL-1ß, 
and glucose levels separately with memory in all 
of the experimental groups (not presented here 
as a graph). 

Measurement of brain and hippocampus 
weights 

The weights of brains and hippocampi did 
not show any significant differences between 
all groups when they were compared with the 
control group and with each other (Figure 5).
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Figure5.The comparison of different protocols 
of exercise on the brain and 
hippocampus weights (gr) in the 
different groups (n=10). Results are 
expressed as mean ± SEM (ANOVA 
test, Tukey’s post- hoc test when 
compared to the control group and 
together. There were not significant 
differences between all groups. 

Discussion

The findings of the current study 
demonstrated that the preventive, therapeutic, 
and protective exercises changed the CORT 
levels in the hippocampus. They also revealed 
that the hippocampal CORT level was higher in 
the preventive exercise than the other exercise 
protocols (Figure 1). This indicated no dominant 
effect of the preventive exercise on the main 
stress indexes such as the hippocampal CORT 
levels. In point of fact, the preventive exercise 
was not adequate for preventing the stressful 
challenges. Of course some previous studies 
reported that exercise could act as a stressor and 
activate the hypothalamic-pituitary-adrenal axis 
(29-31). In the present study, it appears that the 
elevated hippocampal CORT levels could result 
from the chronic stress induced after exercise. In 
other researches as well as our previous studies, 
it was reported that the CORT level crossed from 
the blood brain barrier (BBB) to brain with some 
limitations. Hence, the hippocampal CORT levels 
followed the serum CORT levels (2, 13, 32). In 
addition, the present findings confirmed that 
the protective and particularly the therapeutic 
exercises produced no significant decreases 
in the hippocampal CORT levels compared to 
the control group (Figure 1). Kannangara et al. 
reported a noteworthy reduction in the CORT 
levels in the central nervous system by exercise 
(33). Furthermore, some reports demonstrated 

such different responses on the glucocorticoid 
levels after exercise as enhancement (34), 
reduction (35), and no changes (36) in  
the glucocorticoid levels. Consequently, this 
difference might be related to duration and types 
of exercise and probably exercise time. 

On the other hand, the reduction and 
enhancement of hippocampal BDNF levels were 
observed in the preventive and the therapeutic 
exercises, respectively, compared to the 
normal condition. Additionally, the protective 
exercise had an intermediate condition in the 
hippocampal CORT and BDNF levels compared 
to the other exercise protocols in stressful 
conditions in the current study (Figure 2). 
Previous studies reported a relationship between 
the enhancement of glucocorticoid levels and 
the reduction of BDNF mRNA as well as their 
involvement in memory functions of rat’s 
hippocampus (2, 37-39). However, although 
the results of this study demonstrated this 
relationship, there is no significant negative 
correlation between the hippocampal CORT and 
BDNF levels in the preventive, therapeutic, and 
protective exercises in the stressed rats.

Initially, it appears that the preventive 
exercise may protect the hippocampus against 
the reduction in the hippocampal BDNF level; 
nonetheless, the present findings did not confirm 
the useful effect of the preventive exercise on the 
BDNF levels. Exercise increases the hippocampal 
BDNF levels in hippocampus compared to 
the normal condition (40, 41). The present 
findings could explain some of the mechanisms 
underlying the beneficial effects of the protective 
and particularly the therapeutic exercises on 
reducing stress and probably memory functions. 
Therefore, it appears that the protective and 
the therapeutic exercises can probably affect 
synaptogenesis, plasticity, dendrite proliferation, 
and neurogenesis in the hippocampus (42). 

Other comparisons of the preventive, 
therapeutic, and protective exercise illustrated 
that different exercise protocols did not change 
the IL-1β level in hippocampus (Figure 3). 
Some studies reported that stress increased 
the central IL-1β level (43, 44). On the other 
hand, it was also demonstrated that IL-1β is 
an important neurochemical mediator in the 
stress-induced stimulation of the hypothalamic-
pituitary-adrenal (HPA) axis and the secretion of 
adrenocorticotropin (ACTH) and corticosterone 
(CORT) (45, 46). Hence, the present findings 
suggested that the exercise before, after, 
and during stress could keep the balance of 
hippocampal IL-1 β level in the stress conditions. 
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Conversely, Barrientos et al. reported that 
exercise had no effect on the basal hippocampal 
IL-1β level (44).

According to other our present data, 
the hippocampal glucose level increased in 
the preventive exercise and decreased in the 
therapeutic and the protective exercise groups 
(Figures 3 and 4). Accordingly, all of the 
current data suggested that the changes in the 
hippocampal BDNF and glucose levels followed 
the hippocampal CORT levels. In contrast, the 
inflammatory factor such as IL-1β level did 
not follow the changes in the CORT levels of 
hippocampus in the present study. 

In our previous studies, memory was 
assessed in the preventive, therapeutic, and 
protective exercise groups by passive avoidance 
test (4, 6). In these studies, memory functions at 
the end of the experimental period did not show 
any significant differences in the preventive and 
the protective exercise groups (5, 6). However, 
memory improved in the therapeutic exercise 
group (6). In the present study, the findings did 
not indicate a significant correlation between 
the hippocampal CORT, BDNF, IL-1ß, and 
glucose levels separately with memory in all 
experimental groups. Therefore, the correlations 
between memory functions and memory 
mediators proposed that multiple factors (such 
as hippocampal CORT, IL-1ß, BDNF, glucose, 
and perhaps many other factors) may, together 
but not alone, synergistically affect the memory 
in the interaction exercise with stress.

Conclusion 

The therapeutic exercise had been the best 
exercise protocol in reducing the harmful effects 
of psychological stress on memory mediators in 
the hippocampus. It appears that the therapeutic 
exercise had neuroprotective properties and 
could reverse the harmful effects of stress in the 
hippocampus. However, the preventive exercise 
could not improve the alteration induced by 
the chronic stress. This suggested that the 
exercise time, with respect to stress conditions, 
is an important factor for the responsiveness 
of memory mediators in the hippocampus. 
Accordingly, evaluating other factors and 
gene expression involved in the stress and the 
exercises is highly recommended.
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