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Introduction

Extrachromosomal dsDNA (ecDNA)–apart 
from the mtDNA–in eukaryotic cells of human, 
animal, and plant origin has been known for 
more than three decades at least (1–5). These 
ecDNA molecules are, according to the structure, 
both linear and circular dsDNA; the circular ones 
are mostly termed small polydispersed circular 
DNA (spcDNA); occasionally synonymously 
termed extrachromosomal circular DNA 
(eccDNA) just to classify the DNA structure 
(6, 7). They differ in size from about several 
hundred base pairs (bp) (8) up to ≥ 25 kbp, 
and up to more than 150 kbp (9) for the large 
circular sized DNA. The number of spc/eccDNA 
molecules ranges from several hundreds up to 
one thousand per cell. The term “polydispersed” 
already hints at a great diversity of these DNA 
molecules; it may also indicate different types 
of functions. The spc/ecc-DNA fraction can 
constitute a substantial part of the whole DNA 

extracted, for example from human peripheral 
blood mononuclear cells (PBMCs). Semi-
quantitative experimental assessments show 
the spc-dsDNA fraction constitutes several 
percentages of the whole DNA extracted from 
PBMCs of healthy human subjects (10). However, 
it may depend on, for example, the metabolic 
status of the cell’s activation. Regarding certain 
sequences, there are indications for “rolling circle 
replication” (11). Therefore, the composition 
of ecDNA might change with time and the 
sequences could be different upon replication. 
Circular DNA forms derived from exogenous 
viral infections such as Hepatitis B virus (HBV) 
(12) or retroviral E-DNA (13) are not considered 
here.

There is broad agreement that ecDNA 
originates through diverse mechanisms, for 
example mobile genetic elements (MGE) (14) 
and “Mismatch Repair Pathways” (15), that can 
rearrange diverse DNA sequences from chrDNA 
(16). In the context of mobile DNA, different 
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Abstract
Extrachromosomal (ec) DNA in eukaryotic cells has been known for decades. The 

structures described range from linear double stranded (ds) DNA to circular dsDNA, distinct from 
mitochondrial (mt) DNA. The sizes of circular forms are described from some hundred base pairs 
(bp) up to more than 150 kbp. The number of molecules per cell ranges from several hundred to a 
thousand. Semi-quantitative determinations of circular dsDNA show proportions as high as several 
percentages of the total DNA per cell. These ecDNA fractions harbor sequences that are known to 
be present in chromosomal DNA (chrDNA) too. Sequencing projects on, for example the human 
genome, have to take into account the ecDNA sequences which are simultaneously ascertained; 
corrections cannot be performed retrospectively. Concerning the results of sequencings derived 
from extracted whole DNA: if the ecDNA fractions contained therein are not taken into account, 
erroneous conclusions at the chromosomal level may result. 
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contain these sequences in different degrees. 
Therefore, in addition to the existence of 
ecDNA itself, a potential for changes in the 
composition of their sequence, including an 
active function, cannot be ruled out. This 
concerns species of ecDNA, for example 
those showing sequences in coincidence 
with Human Endogenous Retro-Viruses H 
(HERV-H) (27). HERVs have the potential 
to replicate and to transpose themselves. 
Therefore, when discussing the issues 
of HERVs based only on results from 
sequenced human genomes based on whole 
cellular DNA, the possible “contaminating 
influence” of ecDNA with integrated HERV 
sequences remains unmentioned (28). 
Studies on, for example endogenous viruses 
(29), LINE, et cetera, performed with whole 
DNA extracts from human cells or tissues 
may need to be reevaluated because the 
ecDNA fractions were not taken into account. 
This uncertainty is because sections of the 
LTR sequences of HERVs have been depicted 
to be present in the spc/ecDNA fraction. 
Studies on retrotransposons (30, 31) should 
be reconsidered regarding their allocation 
upon alignments of their ecDNA and/or 
chrDNA if sequencing data is based on whole 
DNA extracts only. These considerations 
apply to plants too (32). Therefore, 
vagueness remains as these facts have not yet 
been considered in otherwise exceptionally 
structured review articles (33).

2. The human genome project: Basically, the 
same holds true for sequencing projects 
regarding the human genome (34). Here, the 
term “genome” usually pertains to chrDNA 
in eukaryotic cells. When the extracted 
whole DNA from the respective human cells 
was used for fragmentation, cloning, and 
sequencing (35, 36), it means: the whole 
DNA was not separated into (i) chrDNA and 
(ii) ecDNA before fragmentation. That is, the 
fragments generated for sequencing consist 
of a mixture of short DNA sequence stretches 
derived from both chrDNA and ecDNA, apart 
from the well-known mtDNA. Furthermore, 
if the fragmentation of the whole DNA was 
performed with restriction endonucleases, 
the remaining single stranded ends of 
their cutting sequences from fragments 
derived both from chrDNA and ecDNA 
would be identical. An incorrect assignment 
of fragments originating from the ecDNA 
into the final chrDNA is, therefore, more 

kinds of retro-/transposons (17, 18), long 
interspersed nucleotide elements (LINE) (19), 
short interspersed repetitive DNA sequences 
such as Alu elements (20), and telomeric repeats 
(21) are known to be essential parts of chrDNA. 
They are also detected in the ecDNA fraction of 
eukaryotic cells. This means that chromosomal 
derived sequences are present in the ecDNA 
but rearranged in some way; how this works 
in detail remains speculative (22). Checking 
these mobile activities revealed aspects of both 
randomly and non-randomly caused instabilities 
within the genome (23). It may be based on 
intrinsic, genetically ingrained structures that are 
activated on demand by environmental impacts. 
This might reflect the plasticity of the human 
genome (24), including the ecDNA. Apart from 
general aspects, functions of ecDNA in different 
eukaryotic cells are not known. Yet, certain hints 
concerning cancer cells are given as described in 
section ‘4’ below.

It is not known for sure: (i) where the 
formation of ecDNA takes place, in the cell 
nucleus and/or the cytoplasm, and (ii) whether 
it is a short transitory formation or a long 
time stable status of certain ecDNA regarding 
possible metabolic functions. Protocols for the 
preparation of ecDNA, in particular ecc-dsDNA, 
are outlined by a few studies (22, 25, 26). The 
reported findings of sequences homologous to 
chrDNA in ecDNA may reflect the particular 
interests of the authors and what they were 
looking for; their results may represent only 
a tiny part of the real existing sequences of 
chromosomal origin contained in ecDNA with 
yet unknown impact. It seems realistic to assume 
that the extensive repertoire of ecDNA sequences 
contains even more different chromosomal 
sequences than previously known.

Possible Impacts

Four selected situations should draw 
attention to possible discrepancies when “whole 
DNA from eukaryotic cells” was used for genome 
sequencing (whole genome sequencing, WGS) 
to ascertain the sequences of the respective 
chromosomes. They are intended to point to a 
paramount importance of both general as well as 
specific aspects of genetics.

1. General aspects: The formation of ecDNA is 
obviously a complex process. However, it is 
known that ecDNA are composed by means 
of chromosomal mobile sequences, such as 
transposons, long terminal repeats (LTR), 
and Alu elements, but they themselves 
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and clinical data are responsibly integrated 
into the “cloud” to look for patterns of 
health and disease…” (33). However, it is 
imperative to note that results showing 
increased numbers of ec/spcDNA in aged 
and malignant cells containing indicator 
sequences (40), in particular the double-
minute ecDNAs (41, 42), must receive 
attention. In cancer cell lines, the amount of 
spcDNA can be as high as up to 17.8% (14). 
The points in question here are the issues: 
when sequencing whole DNA from such 
aged cells, how do these indicator sequences 
harbored in ecDNA get identified for the final 
chromosomal sequence alignments? How are 
they treated if they contain mutations, single 
ones or multiple copy number variations? 
Not considering the fraction of ecDNA in 
the case of the individualised sequencing 
of whole DNA for multigenic analysis may 
entail incorrect association in disease 
assessments. This has also to be seen in the 
context of Alu sequences in “germline genetic 
diseases” (43), which also applies to “normal 
lymphocytes” (14). Therefore, activities 
to integrate patients’ genetic data gained 
from NGS of whole DNA into this “cloud” 
to use them as diagnostic tools should not 
be enforced until any uncertainties possibly 
deriving from ecDNAs are eliminated.

Discussion

Studies on ecDNA from human cells and 
tissues have shown that they contain genetic 
elements which are known to belong to chrDNA. 
Protocols are available for the correction of 
possible “sequence errors” after sequencing (44–
48). However, genomic DNA sequencing, that is 
WGS, in which ecDNA has not been separated 
from chrDNA prior to fragmentation can cause 
problems. This applies if sequencings are 
performed and the results are analysed without 
knowledge of the sequences of the ecDNA as 
parts of the whole cellular DNA. It is, therefore, 
questionable whether, after NGS of the whole 
DNA of eukaryotic cells, corrections to chrDNA 
with bioinformatics lacking data on ecDNA can 
be adequately achieved.

Therefore, evidence-based studies are 
required to demonstrate whether the disregard 
of ecDNA can or may not cause any uncertainties 
in the assessment of chromosomal sequences 
in general, and also of diseases on the basis 
of individualised sequencing. For example, 

likely. In addition, the possible different 
patterns of methylation of the cutting 
sequences of the applied restriction 
enzymes on both chrDNA and ecDNA 
sequences might result in uncertainties on 
alignments of chrDNA. Similarly, findings 
indicate that using mechanical shear forces 
on whole DNA to get fragments for next-
generation sequencing (NGS) results in 
DNA sequences that are non-randomly 
fragmented (37). This effect has not 
been considered for ecDNA with respect 
to their broad range in molecular sizes.  
The various ecDNA contain rearranged DNA 
or DNA composed of shorter chromosomal 
sequences, for example by incremental 
acquisition by MGEs. Depending on the 
proportion of ecDNA in the subject’s 
whole cell DNA, a greater or lesser extent 
of sequences of ecDNA was fragmented, 
cloned, and subjected to NGS. Sequences 
derived from ecDNA do not carry tags that 
exactly predict their source, such as derived 
from ecDNA, and might have been handled 
as sequences of chromosomes in the final 
alignments. NGS of the whole DNA of 
eukaryotic cells allows no discrimination 
between chrDNA and ecDNA sequences. 
Nothing is known about how many, and 
where, ecDNA derived sequences are 
wrongly placed into chrDNA; this may 
have led to wrong conclusions in final 
analysis in various fields. Therefore, critical 
aspects arise: possible uncertainties with 
the allocation and alignment of the final 
chromosomal sequences have to be taken 
into account if the ecDNA fractions have not 
been considered.

3. The ENCODE project: Furthermore, the 
issues addressed also apply to discussions 
on epigenetics of the human genome (38). 
The ENCODE project is designed to look 
for epigenomes in the human genome, 
for example (39). However, ecDNA could 
exhibit patterns of individual methylation 
too (10). Therefore, they might be co-
precipitated, for example, according to 
the immunoprecipitation protocols for 
methylated DNA. These possible situations 
have not been considered in the respective 
results.

4. Medical aspects: “…as next-generation 
sequencing begins to break down the barriers 
between research and the clinic, as genomic 
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genomes. EcDNA in eukaryotic cells is a fact. 
The evaluation of their possible impact in NGS 
of the human genome is necessary. Independent 
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