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Introduction

Alzheimer’s disease (AD) is a 
neurodegenerative disorder (1) that leads to 
progressive cognitive dysfunction (2–4) and 
affects different areas of the brain such as the 
amygdala, entorhinal cortex, and hippocampus 
(3, 5). The hippocampus, a brain area critical 
for learning and memory, is a vulnerable and 

plastic brain structure that is damaged at early 
stages of AD (6–8). The neuropathology of AD 
is characterised by extracellular deposits of 
β-amyloid (Aβ) plaques within senile plaques, 
intracellular neurofibrillary tangles of tau 
protein (NFTs) and neurodegeneration (9–11). 
Accumulation of Aβ plaques in the hippocampus 
lead to synaptic degeneration (12–14), neuronal 
apoptosis (15) and cognitive impairment (16, 17).
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Abstract
Introduction: Intracerebroventricular administration of streptozotocin (icv-STZ) induced 

apoptosis changes in neurons similar to Alzheimer's disease. The serotonergic system via its 
receptor involved in survival of neurons. The present study examined the ability of selective 
5-HT1A receptor antagonist (NAD-299) and 5-HT2A receptor agonist (TCB-2) to attenuate the 
apoptosis caused by the icv-STZ in the rat.

Methods: The icv-STZ (3 mg/kg, 10 μL, twice) induced neuronal loss in the hippocampus 
of adult male rats. Animals were divided into naive control, sham-operated, STZ+saline (1 μL, icv), 
STZ+NAD-299 (5 μg/μL, icv), STZ+TCB-2 (5 μg/μL, icv), and STZ+NAD-299+TCB-2 (5 μg/μL of any 
agent, icv) groups. Following the 35 days’ treatment period, neuronal apoptosis was detected using 
the Tunnel. Cells with morphological features of apoptotic cell were contended by microscopy.

Results: TCB-2 and NAD-299 administration decreased number of apoptotic neurons in 
the treatment group compared with the STZ group. Combined treatment of STZ rat with NAD+TCB 
more decreased number of apoptotic cells in compare to TCB-2 or NAD-299 treated STZ groups.

Conclusion: Treatment with 5-HT1A receptor antagonist or 5-HT2A receptor agonist 
diminished apoptosis. The beneficial effect of 5HT1A receptor inhibition was potentiated with 
activation of 5-HT2A receptor in prevention of apoptosis in hippocampus.
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cognitive functions in various animal models 
of cognitive dysfunction (45). Over-expression 
of 5-HT1AR on a rat model of AD was 
demonstrated (46). 

The 5-HT2A receptors are remarkably 
expressed in the hippocampus (33). It has been 
reported that 5-HT2AR agonists improved 
learning and memory impairments, while 
5-HT2AR antagonists have anti-psychotic and 
anti-depressant properties (47). Recently, it was 
found that 5-HT1AR blockade and 5-HT2AR 
activation improved cognitive dysfunction in icv-
STZ-treated rats (48). However, data regarding 
5-HT1AR inhibition and 5-HT2AR activation in 
programme cell dead in AD rat is not available.

The previous study used Nissl staining in 
order to quantify the neuronal loss (48). The 
Nissl staining show nucleic acid content of cells 
(49). Neurons have DNA in the nuclei and RNA 
highly RNA concentrated in rough endoplasmic 
reticulum and ribosomes (Nissl substance) (50) 
that stained with cresyl violet in this method (51). 
Due to Nissl staining technique is based on the 
binding of basic dye with the nucleic acid content 
of cells (50), it is not a specially distinguished 
nuclei of dead neuron (52). Terminal Deoxy 
nucleotidyl Transferase-Mediated dUTP Nick-
End Labeling (TUNEL) staining is a suitable 
method for detecting DNA fragments of nuclei 
(53). Therefore, Tunnel is very useful method to 
study the nuclei of neurons, and understand the 
apoptotic neurons of the brain area. The aim of 
this study was to determine the chronic effect of 
5-HT1AR antagonist and 5-HT2AR agonist, on 
the rate of apoptosis in the hippocampus area in 
a rat model of AD. 

Materials and Methods

Animals

Adult male Wistar rats (250 g–300 g) were 
obtained from the animal house of Hamadan 
University of Medical Sciences. All animals were 
housed in a room with temperatures ranging 
from 20 °C–24 °C and lights maintained on 
a 12:12 light: dark cycle. Rats were allowed 
to acclimate for one week prior to the study. 
Water and food were available ad libitum. All 
experiments were approved by the research and 
ethics committees of the Hamadan University 
of Medical Sciences (IR.UMSHA.REC.1395.547) 
and were performed according to the Guide for 
Care and Use of Laboratory Animals published 
by the United States National Institutes of Health 
(NIH Publication No. 85-23, revised 1985).

Intracerebroventricular administration of 
streptozotocin (icv-STZ) is one of the animal 
model of AD (18–20). The local injection of STZ, 
a glucosamine derivative of nitrosourea, at a 
sub-diabetogenic dose makes similar pathology 
to AD such as aggregation of Aβ peptides (21, 
22), tau hyperphosphorylation, impairment 
of brain glucose transporters of neurons (23) 
and increased neuronal death rate (20, 24–
26). Apoptosis is a process of programmed 
cell death (21) and is a basic physiologic 
process contributing to the maintenance of 
cellular homeostasis (14, 19, 27, 28). Apoptosis 
is characterised by cytoplasmic membrane 
blebbing, cell shrinkage, chromatin condensation 
and nuclear DNA fragmentation (21, 29). A 
large number of apoptotic cells can be found 
in AD tissue (30). Mutations in AD causative 
genes such as amyloid precursor protein (APP), 
Presenilin-1 (PSEN1) and Presenilin-2 (PSEN2), 
increase Aβ peptide (31). In AD, there are several 
stimuli for apoptosis including reactive oxygen 
species, accumulation of Aβ (30), mitochondrial 
dysfunction and DNA damage (31).

Several neurotransmitter systems 
affected by AD including the acetyl choline, 
gamma-amino butyric acid (GABA), 
serotonin and norepinephrine (2, 3, 32). 
Serotonin (5-hydroxytryptamine; 5-HT) 
is a multifunctional bioamine acting as a 
neurotransmitter and a neuromodulator with a 
particular presence in the hippocampus (33, 34). 
5-HT has multiple functions in the mammalian 
central nervous system such as anxiety, 
memory, nociception, reward and addiction 
(35–37). These effects are mediated through 
seven types of 5-HTR (38). Seven families of 
5-hydroxytryptamine receptors and subtypes 
(5-HT1A–1E, 5-HT2A–2c, 5-HT3A–3C, 5-HT4, 
5-HT6, and 5-HT7) have been identified (39). All 
5-HTR are G-protein-coupled receptors (GPCRs) 
with the exception of 5-HT3, which is a ligand-
gated cation channel (40). 

The highest density of the 5-HT1AR was 
found in areas important for learning and 
memory, such as the frontal cortex, hippocampus 
and septum (41). The 5-HT1AR is to stimulate 
cell proliferation, differentiation and apoptosis 
(42). It has been reported that the 5-HT1AR 
induces apoptosis in CHO cells (43). Several 
studies show that stimulation of postsynaptic 
5-HT1AR in the dorsal raphe counteracts deficit 
in learning in naive rats (44), while 5-HT1AR 
antagonists can enhance cholinergic and/
or glutamatergic transmission and improve 
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(TCB-2, NAD-299 and vehicle) were done via icv 
injection for 35 days. Figure 1 shows a schematic 
of experimental design and the timeline. 

Surgical Procedures

The animals were anesthetised with 
ketamine (100 mg/kg, Behbod Darou, Iran) and 
xylazine (10 mg/kg, Alfasan, The Netherlands) 
and placed in a stereotaxic apparatus (Stoelting 
Co., Chicago, IL). The head positioned in a frame 
and a midline sagittal incision was made in the 
scalp. A guide cannula was lowered into the right 
lateral ventricle using the following coordinates: 
−0.9 mm posterior to the bregma, 1.6 mm lateral 
to the sagittal suture, and 3.1 mm beneath the 
skull (54). The guide cannula was secured for 
icv injection. After surgery procedure, the rats 
were recovery for one week. Seven days' recovery 
prevented inflammatory reaction in rats. For 
an overview of the experimental protocol and 
timeline, see Figure 1.

To create AD model, STZ was dissolved 
in 0.9% saline, then immediately divided into 
aliquots and stored at −20 °C before use. STZ 
microinjected icv after 7 days of recovery (day 1) 
and again 2 days later via a cannula (day 3) at a 
dose of 3 mg/kg in 10 μL (34, 55, 56). After STZ 
microinjection, animals were icv treated NAD-
299, TCB-2 or vehicle for 35 consecutive days. 
Drugs or vehicle microinjections were performed 
with a 30-G injector cannula (1 mm below the tip 
of the guide cannula) with a Hamilton syringe 
(Hamilton, Bonaduz, Switzerland) attached 
to the injector cannula by polyethylene micro-
tubing (PE-20). Figure 2 shows the positioning of 
the treatment cannulas and the STZ, NAD-299, 
TCB-2 and saline injection.

Chemicals

STZ was purchased from Santacruz 
Company (CA, USA). NAD-299, [(R)-3-N, 
N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-
1-benzopyran-5-carboxamide hydrogen (2R,3R)-
tartrate monohydrate; AZD7371] and TCB-2 
[(7R)-3-bromo-2,5-dimethoxy-bicyclo[4.2.0] 
octa-1,3,5-trien-7-yl] methanamine] were 
purchased from Tocris Bioscience Company 
(Bristol, UK). NAD-299 and TCB-2 were 
dissolved in dimethyl sulfoxide (DMSO) and STZ 
was dissolved in normal saline.

Study Design

The rats were divided randomly into the 
following six groups (n = 5 rats in each group):  
(i) control group, which did not undergo 
operation or treatment; (ii) sham group, 
which received 10 μL of vehicle via icv 
injection during operation and subsequently 
received 1 μL of vehicle for treatment;  
(iii) AD group, which received STZ (3 mg/
kg, 10 μL) via intracerebroventicular (icv) 
injection during operation and subsequently 
received 1 μL of vehicle treatment for 35 days; 
(iv) AD+NAD-299-299 group, which received 
STZ via icv injection during operation and 
subsequently received NAD-299 (selective 
5-HT1A R antagonist, 5 μg/μL); v) AD+TCB-2 
group, which received STZ via icv injection 
during operation and subsequently received 
TCB-2 (selective 5-HT2AR agonist, 5 μg/μL) 
and vi) AD+TCB-2+NAD-299 group, which 
received STZ via icv injection during operation 
and subsequently received TCB-2 (5 μg/0.5 μL) 
and NAD-299 (5 μg/0.5 μL). All of treatments, 

Figure 1.  Time line of experimental design
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camera attached to a light microscope (400×) 
and number of the brown dark cells was counted. 
For each animal, the mean apoptotic cell number 
was obtained by counting five coronal sections.

Statistical Analysis

The data were analysed with one-way 
analysis of variance (ANOVA) and Tukey post-
hoc tests. Statistical significance was set at  
P < 0.05. The data are expressed as mean ± 
standard deviation.

Results

Immunohistochemistry for apoptotic 
neurons in the CA1 region of the hippocampal 
coronal sections was showing in Figure 3 (a–f). 
TUNEL staining was further performed in these 
sections to detect apoptotic neurons. Table 1 
presented number of apoptotic neurons for 
CA1 area of the hippocampus in all groups. 
One-way ANOVA has detected a significant 
difference in the number of apoptotic cells in 
the CA1 region between experimental groups  
[F(5,35) = 174.06, P < 0.001] (Figure 4). Tukey 
post-hoc analysis revealed a higher number of 
apoptotic neurons in the STZ group, than in 
the control, sham and STZ treated with NAD-
299, TCB-2 and NAD+TCB groups, respectively  
(P < 0.001). These results showed a significant 
reduction in apoptotic neurons in the STZ group 
treated with NAD+TCB and STZ rats treated 
with TCB-2 when compared with the NAD-299 
group (P < 0.001 and P < 0.003, respectively).  

Tissue Preparation

At the end of treatment, all the animals 
were anesthetised with ketamine and xylazine 
(100:10 mg/kg), transcardially perfused with 
4% paraformaldehyde in 0.1 M phosphate buffer 
(pH 7.3) and their brains were dissected out 
(Figure 1). Isolated rat brain was fixed into 4% 
paraformaldehyde for 1 week and brains were 
dipped into paraffin. The brain sliced into 5 μm 
tissue sections using a microtome (LeitzGmBH, 
Wetzlar, Germany). The hippocampi were 
sectioned into 5 µm with 120 µm intervals (57).

TUNEL Staining: Determination of 
Neuronal Apoptosis

To identify apoptotic cell death in the 
hippocampal neurons, TUNEL staining was 
performed using the kit (Roch, Germany) 
according to the manufacturer's instructions. 
The average apoptotic cell number was prepared 
for DNA fragmentation detection using the 
assay, as previously described (58). According 
to Paxinos and Watson (54) the coordinates 
for analysing the CA1 hippocampal region 
are −3.3 to −3.8 from Bregma, similar as 
previously described study (59). In brief, after 
sample permeabilisation (0.1 M citrate buffer, 
pH 6), sections were incubated with TUNEL 
reaction mixture for 60 min at 37 °C. Following 
this, converter-peroxidase (30 min) and 
3,3'-diaminobenzidine substrate (10 min) were 
added to the samples, in that order. Sections 
were counterstained for hematoxylin. Mounted 
sections were photographed with a digital 

Figure 2.	 Illustration of rat brain section. The approximate location of STZ, NAD-299, TCB-2 or 
saline icv injection in a cross section view of atlas plate
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STZ in the hippocampus of AD rat. Treatment 
with NAD-299 (selective, high affinity 5-HT1AR 
antagonist), TCB-2 (potent, high affinity 
5-HT2AR agonist), and NAD-299+TCB-2 in rats 
receiving STZ, decreased the neuronal apoptosis 
in the hippocampus area.

Hippocampus has a critical role on the 
learning and memory (60). Synaptic plasticity 
in the hippocampal neurons involves in the 
memory formation (4). Several agents as 
well as neurotransmitters such cholinergic, 
glutamatergic, serotonergic, GABAerigic, 
vanilloid, cannabinoid systems influence 
the hippocampal synaptic plasticity and 
learning and memory (3, 60, 61). In the 
AD, memory impairments are due to the 
hippocampal neurodegeneration, imbalance 
of neurotransmitter systems and apoptosis in 
neurons (14, 62, 63).

Also, the number of apoptotic cells was 
significantly lower in the STZ group treated 
with NAD+TCB than in the untreated STZ 
group (P < 0.001). Tukey post-hoc analysis 
showed that number of apoptotic neurons 
increased in the STZ treated with NAD-299 
and TCB-2 groups compare to sham group 
(P < 0.001; P < 0.003, respectively). The 
apoptotic cell numbers were not significantly 
different between control and sham groups  
(P = 0.969 < 0.050). 

Discussion

The present study evaluated the effects of 
5-HT1AR inhibition and 5-HT2AR activation by 
selective antagonist and agonist in a rat model 
of AD. The result of current study showed that 
neuronal apoptosis induced by icv injection of 

A B C

D E F

Figure 3.	 Light micrographs of cell apoptosis in the hippocampal CA1 region. Sections derived 
from (A): control; (B): sham; (C): STZ; (D): STZ+TCB-2; (E): STZ+NAD-299 and (F): 
STZ+TCB+NAD groups stained by TUNEL. The arrow shows the apoptotic neuron. Scale 
bar = 100 μm, magnification: 400×

Table 1.	 Number of apoptotic neurons for CA1 area of the hippocampus

Group Control Sham STZ STZ+NAD STZ+TCB STZ+NAD+TCB

Mean 253.16 218.5 83.3 132.66 153.83 148.83
SEM 6.46 15.39 6.18 7.03 5.85 6.18
SDM 15.82 37.708 15.13 17.23 14.34 15.14

standard error mean (SEM), standard deviation mean (SDM)
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indicated that 5-HT1A receptor stimulates both 
of anti-apoptotic and pro-apoptotic pathways in 
hamster ovary fibroblast cells (43). Stimulation 
of 5-HT1AR in the dorsal raphe counteracts the 
effect of intrahippocampal 7-chloro-kynurenic 
acid micro-injection on pyramidal cells in the 
hippocampus (44). Upregulation of 5-HT1AR by 
the non-selective 5-HT1AR agonist, 8-OH-DPAT 
alleviate cellular apoptosis, and downregulation 
of 5-HT1AR mediated the apoptosis pathway in 
the hippocampus of mouse brain (75). 

The 5-HT1AR is highly expressed in the 
hippocampus (2, 33). This receptor is related to 
inhibitory Gi-proteins and 5-HT1AR function 
result to an inhibition of adenylyl cyclase's 
activity and thus decrease the cAMP production 
(76). Binding of antagonists to 5-HT1AR cause 
disinhibitory effect of 5-HT (77, 78), and increase 
the activity of serotonergic neurons (79). 
Hippocampal 5-HT1AR expression changed in 
AD, and molecular binding to 5-HT1AR has been 
examined in AD patients (46). Present finding 
showed that NAD-299, selective 5-HT1AR 
antagonist decreased the neuronal apoptosis in 
hippocampus. Also, this study confirmed the 
previous suggestion about selective agonist for 
5-HT1AR and new therapeutic target in nervous 
disorders (39) and it is demonstrated that 
Aβ injected in rat hippocampus induced over 
expression of 5-HT1AR a rat model of AD (46).

Present data confirmed that twice 
administration of STZ into the brain induces 
loss of neurons in the hippocampus (64), and the 
neuron death done (14, 28). In a recent study, 
the results of Nissl staining showed neuronal 
death in the hippocampus of STZ treated rats 
(48) while it was not recognised the necrosis 
and apoptosis. TUNEL staining is a valuable 
technique to recognition of apoptotic neuron 
in the brain areas such as hippocampus (55, 65, 
66). TUNEL staining confirmed that apoptosis 
occurred after icv-STZ administration in rat 
brain (67, 68). DNA fragmentation exhibited 
the apoptosis condition in the brain (29, 69). 
Icv injection of STZ caused oxidative stress 
and neuronal apoptosis in rat brain by pro-
apoptotic pathway (69, 70, 71). In addition, 
icv STZ initiated inflammation mechanisms 
in the cell (72, 73). However, there is no 
neuroinflammation data in this study which to be 
construed details. 

The present study revealed that icv injection 
of NAD-299 diminished the effect of STZ-
induced neuronal apoptosis in the hippocampus. 
5-HT1AR protein expressions decreased 
neuronal death of astrocytes in the ischemic 
hippocampal CA1 region (74). In agreement with 
current results, amyloid beta peptide induced 
neuronal death and decreased expression of 
5-HT1AR in rat brain (46). Another study 

Figure 4.	 The number of apoptotic neurons was calculated. Each column represents mean ± SDM. 
*** (P < 0.001) as compared with control group. ###, (P < 0.001) and ##, (P < 0.01) as 
compared with sham group. !!!, (P < 0.001), as compared with STZ group. ^^^, (P < 0.001) 
and ^^, (P < 0.01) as compared with STZ+NAD group
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Conclusion

In conclusion, the present study 
demonstrates that 35 days icv administration of 
NAD-299 and TCB-2 prevented the STZ-induced 
apoptosis in the hippocampus of rat received icv-
STZ. The combine treatment with NAD-299 and 
TCB-2 has a synergic effect in the hippocampus.  
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The other finding of current study showed 
that icv administration of TCB-2, potent and high 
affinity 5-HT2AR agonist, reduced STZ-induced 
apoptosis in the hippocampus. 5-HT2AR has 
high expression in the hippocampus (33). The 
expression of 5-HT2AR mRNA in granule cells 
and pyramidal neurons of hippocampus have 
been demonstrated in clinical and pre-clinical 
cellular studies (80, 81). TCB-2 binding to the 
5-HT2AR is linked to Gq-proteins and exert its 
effect via the phospholipase-C signaling pathway 
(74), and 5-HT2AR activity prevents apoptosis 
of cell (46). Therefore, it seems that, chronic icv 
administration of TCB-2 decreased the apoptosis 
in neurons of hippocampus.

Current result indicated that treatment 
with NAD-299+TCB-2 inhibited the apoptosis 
effect of icv-STZ in the hippocampus of rat. 
It seems that blockade of 5-HT1AR and the 
activation of 5-HT2AR can potentiate the 
valuable, and single effect of NAD-299 or 
TCB-2 in neurons of hippocampus. There 
are few available studies about synergetic 
effect of these receptors and apoptosis in the 
nervous system. Both of these receptors have 
the remarkable expression of mRNA in the 
hippocampus (81). Combined treatment with 
NAD-299 and TCB-2 begin phospholipase-C 
signaling pathway, and reinforce the influence 
of serotonin in serotonergic neurons (77–79). 
The technique or agent which can modulate the 
death of a cell is known for therapeutic target 
in neurodegenerative disease (21). Therefore, 
current finding showed that the combined 
treatment with NAD-299 and TCB-2 has a 
synergic effect in the brain and the apoptosis 
neuron is decreased in the hippocampus of rats.

There are some limitations in the current 
study. One of the limitations is other assays 
support the results of TUNEL assay in order 
to differentiate the cell necrosis from neuronal 
apoptosis in this study. Also, the result of 
current study is completed, if the control with 
NAD-299 and TCB-2 treated without icv-STZ 
injection is added in experimental groups. The 
other limitation of this finding was the treatment 
doses of TCB-2 and NAD-299. There was no 
significant difference in STZ+TCB-2 compared to 
STZ+NAD+TCB. Synergistic effect of 5-HT1AR 
inhibition and 5-HT2AR stimulation was found 
compared to 5-HT1AR blocking. It is possible 
that findings were completed by different doses 
of agent. The more research is necessary for 
better understanding about the beneficial effect 
of synergic treatment of these receptors in the 
central nervous system.
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