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Introduction

A glioma is a type of cancer that arises 
from glial cells. In 2016, the World Health 
Organization (WHO) updated its terminology 
in categorising gliomas, which can be 
categorised according to the tissue from which 
the cancer arises, including astrocytoma, 
oligodendroglioma, oligoastrocytoma, and 
glioblastoma (1). Other than mere histological 
categorisation, WHO has incorporated the 
molecular patterns of the tissues (1). Generally, 
grade I has a low proliferative potential, grade 
II has an infiltrative nature, and grade IV is 
the most malignant type (1). Although grade II 

glioma can be resected surgically, glioma may 
infiltrate into other brain areas, limiting its 
complete removal (2). The average survival rate 
of patients with a grade II tumour is an average 
of seven years, a rate that has not been improved 
for the past three decades, based on previous 
WHO assessment due to a limited number of 
studies (3). Additionally, some grade II gliomas 
are able to advance into more malignant types 
of tumours, worsening the prognosis (3). 
Unfortunately, having a glioblastoma, a grade 
IV astrocytoma, is strongly associated with 
a poor patient outcome and with a median 
survival rate of approximately six months (4). 
Despite the advancements of cancer research 
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Abstract
A glioma, especially a grade IV glioblastoma, is a malignant tumour with a poor prognosis 

despite growing medical advancements. Researchers have been looking for better and more 
effective treatments targeting the molecular pathways of gliomas due to glioblastomas’ ability 
to develop resistance to chemotherapies. Moreover, glioma stem cells (GSC) contribute to 
maintaining the glioma population, which benefits from its ability to self-renew and differentiate. 
Recent research has reported that through the introduction of umbilical cord mesenchymal 
stem cells (UCMSC) into glioma cells, the growth and development of the glioma cells can be 
downregulated. It has more currently been found out that UCMSC release extracellular vesicles 
(EVs) containing miRNA that are responsible for this phenomenon. Therefore, this review analyses 
literature to discuss all possible miRNAs contained within the UCMSC’s EVs and to elaborate on 
their molecular mechanisms in halting gliomas and GSC growth. This review will also include the 
challenges and limitations, to account for which more in vivo research is suggested. In conclusion, 
this review highlights how miRNAs contained within UCMSC’s EVs are able to downregulate 
multiple prominent pathways in the survival of gliomas.

Keywords: glioma, umbilical cord, mesenchymal stem cells, extracellular vesicles, microRNA

Advancing towards Effective Glioma 
Therapy: MicroRNA Derived from 
Umbilical Cord Mesenchymal Stem Cells’ 
Extracellular Vesicles

Eko NgadioNo1, Novi Silvia HardiaNy2

1 International Class Program, Faculty of Medicines Universitas Indonesia, 
Jakarta, Indonesia

2 Department of Biochemistry & Molecular Biology, Faculty of Medicine, 
Universitas Indonesia, Jakarta, Indonesia

Submitted: 4 Aug 2018
Accepted: 10 Dec 2018
Online: 29 Aug 2019

Review Article



Malays J Med Sci. Jul–Aug 2019; 26(4): 5–16

www.mjms.usm.my6

65–70 nucleotide structures, called precursor-
miRNAs (pre-miRNAs) (11). This processing of 
pre-miRNAs by the microprocessor is closely 
regulated by the Smad (11). The resulting pre-
miRNAs are transported out of the nucleus 
through the nuclear exporting factor 5 (EXP 5) 
(12). Once pre-miRNAs arrive in the cytoplasm, 
the RNAse III endonuclease component of 
another protein, called Dicer, working together 
with TARBP2 and PRKRA, cleaves pre-miRNAs 
into miRNAs (13). The resulting double-stranded 
miRNAs are separated into two: a guide strand, 
which will attach to RNA-induced silencing 
complexes (RISC), and a passenger strand, which 
will be discarded (10). RISC-carrying, mature 
miRNAs will detect 3’ untranslated regions 
(UTR) of their complementary strands and 
repress the target mRNA translation, the mRNA 
degradation, or both (9). Similar to other nuclear 
regulation, the expressions of miRNAs are also 
affected by epigenetic aspects, such as DNA 
methylation as well as histone modifications 
(10). In general, miRNAs work through post-
transcription control, limiting the mRNAs to be 
translated.

UCMSC secrete multiple cytokines as well 
as EVs to communicate with neighbouring 
cells in a paracrine manner (14, 15). Cytokines 
are proteins that are freely secreted to the 
extracellular environment and that bind to a 
cell’s receptor. On the other hand, EVs serve as 
a vehicle that protects vulnerable compounds, 
such as RNA or protein, from the extracellular 
environment. The released EVs from the donor 
cells can be taken by recipient cells through 
endocytosis, delivering the contained materials 
into the recipient cell’s cytosol or intracellular 
organelles (9). Interestingly, EVs secreted 
by UCMSC contain miRNAs, for which the 
complementary bases are located within gliomas, 
negating RNAs’ potent effect for gliomas’ survival 
(16, 17). Recently, a range of miRNAs within 
UCMSC’s EVs were discovered (14). However, 
the full mechanism of how EVs are endocytosed 
into gliomas is yet unknown. Furthermore, 
the mechanism of the released miRNAs that 
search for their complementary mRNAs 
within gliomas is also unknown. Nevertheless, 
evidence has shown that EVs from UCMSC were 
successfully internalised by gliomas through 
a distinct mechanism, inhibiting proliferation 
and stimulating gliomas’ apoptosis in vitro (18). 
Multiple types of miRNAs (as shown in Table 1) 
and their proposed mechanisms within gliomas 
will be described below. 

and treatments, the outcomes, even after these 
treatments, remain substandard (5). These 
seemingly tough glioblastomas may arise due 
to a small number of cancer stem cells (CSC) 
that help in the development of gliomas (6). 
This small population of CSC, similar in its 
role to normal stem cells, allows cancer cells to 
proliferate as well as to differentiate into various 
cell phenotypes (7).

In recent years, increasing evidence has 
shown that the condition media of mesenchymal 
cells derived from umbilical cords may inhibit 
the cell cycle and stimulate a senescence effect 
on gliomas (6). This finding sheds new light on 
a possible method of treating gliomas, as the 
umbilical cord mesenchymal stem cells (UCMSC) 
are able to migrate towards CSC, specifically 
with high proliferation and low immunogenicity, 
making them a suitable candidate to fight 
against CSC (7). However, is still not known 
which components released by UCMSC exert an 
inhibitory effect on gliomas. Recently, there have 
been many reports that have shown microRNAs 
(miRNAs) possess inhibitory abilities concerning 
gliomas. Therefore, the inhibitory effects that 
have been shown by UCMSC may be due to the 
diverse miRNAs within UCMSC’s extracellular 
vesicles (EVs), which affect the signal cascade 
pathway of the glioma (8). Thus, this review will 
highlight the prominent miRNAs released within 
UCMSC’s EVs that may limit the survival of 
gliomas and glioma stem cells (GSC) as potential 
glioma treatments. Moreover, the molecular 
mechanisms behind glioma and GSC survival 
inhibition will be described. 

Normal Functions of UCMSC’s 
Extracellular Vesicles and MicroRNAs

The discovery of miRNA has changed the 
perspective of researchers in the regulation 
of mRNA. Moreover, miRNAs were once 
considered to be inoperable, noncoding RNA. 
MiRNAs are single-stranded RNA with a length 
of approximately ~22 nucleotides (9). RNA 
polymerase II within the nucleus helps in the 
formation of a unique stem-loop structure, 
called pri-miRNA, through transcription 
(10). The structure of pri-miRNA is similar to 
general mRNA, as it is equipped with a 5' cap 
and a poly-A-tail (11); additionally, and it is 
cleaved by the RNAse III endonuclease attached 
to the microprocessor (DGCR8/DROSHA) 
complex in the nucleus, leaving only around 
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cancer (21). However, it is less likely to locate 
Survivin in terminally differentiated cells (21). 
The increased expression of Survivin worsens 
the outcome of gliomas (22). Addressing 
Survivin as potential therapeutic target slows the 
progression of gliomas by inhibiting invasion and 
reducing their proliferation rate (23). Moreover, 
suppressing Survivin is correlated with decreased 
resistance to chemotherapy and radiation 
therapy (24, 25). Survivin is critical in affecting 
gliomas’ survival due to its dual functions, 
that is, cell division and its effect on regulating 
caspase 9 (the internal apoptosis pathway) (26, 
27). It can be said that damage to Survivin’s 
ability in a normal cell will lead normal cells 
into malignancies in agreement with the two 
hallmarks of cancer, resisting apoptosis and 
the cell’s ability to proliferate indefinitely (28). 
Therefore, the effort in blocking the upstream 
pathway of Survivin, the AKT-mTOR pathway, is 
crucial in limiting the aggressiveness of gliomas.

MicroRNAs, Found within UCMSCs’ EVs, 
Downregulate Essential Gliomas and 
Glioma Stem Cells’ Molecular Pathways

MiR-199a-3p limits glioblastoma survival 
through the AKT-mTOR pathway, leading to 
Survivin’s downregulation 

Though UCMSC’s EVs do not contain 
miR-199a-3p specifically, they contain its 
precursor, miR-199a (17). It has been shown 
that glioblastomas, introduced with miR-
199a-3p, reveal low overall proliferation and 
low expression of proteins in the AKT-mTOR 
pathway, including mTOR, AKT and P70S6K 
(16). The downregulation of protein in this AKT-
mTOR pathway initiates the glioma autophagy 
mechanism (19). Furthermore, AKT-mTOR 
downstream signalling will eventually lead to a 
potent protein called Survivin (20).

Survivin is present in highly divisive cells, 
such as developing embryos and, unfortunately, 

Table 1. Inhibitory effect of microRNA derived from UCMSC’s EVs against glioma

Potential 
miRNA

Downregulated 
pathway

Downregulated 
components Potential cells Potential outcome Reference

miR-199a-3p Akt-mTOR pathway mTOR, Akt, and 
P70S6K

Glioblastoma Reduced proliferation, 
autophagy

(16, 17, 19)

miR-410 - MET Glioblastoma, 
GSC

Sensitising to ionising 
radiation

(29, 30, 33)

miR-146a EGFR signalling 
pathway

Notch1 protein, P13K, 
K-Ras, Cyclin D1, and 
MMP9

Glioma, GSC Decreased in 
aggressiveness

(34, 35)

inhibiting Akt 
phosphorylation

Let-7b NF-kB E2F2, Cyclin D1, 
IKBKE

 Glioblastoma, 
GSC

Reduced growth and 
migration

(45, 47, 48, 
49)

miR-181 family Cell cycle CyclinB1 Glioma, 
Glioblastoma

Reduced proliferation, 
autophagy

(34, 55)

miR-181a EGFR/P13K/Akt Notch 2, Bcl-2 Glioblastoma, 
GSC

Sensitising to ionising 
radiation

(57, 59)

miR-181b MAPK, NF-kB MEK1, MDM2, 
KPNA4

GSC, 
Glioblastoma

Sensitising to 
temozolomide and 
teniposide

(61, 62, 63, 
65)

miR-181c TGF- β downstream 
pathways

Notch2, N-cadherin, 
Vimentin

Glioblastoma Decreased in invasiveness (66, 67)

Upregulated 
E-cadherin

miR-181d MAPK/ERK and 
P13K/AKT 

MGMT, K-ras, Bcl-2 Glioblastoma Decreased glioblastoma 
growth in vivo, sensitising 
to temozolomide

(44, 71)

miR-145 - ABCG2, ADAM19 GSC, 
glioblastoma

Sensitising to 
temozolomide, reduced 
invasion

(17, 72, 77)
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STAT3, MAPK and AKT (42). AKT activation is 
more prominent in both cases while STAT3 and 
MAPK activation varies (42). 

As aforementioned, activated AKT 
shares a part in guiding the multiple pathways 
responsible for the malignant behaviour of 
gliomas. MiR-146a generates an anti-glioma 
effect by preventing AKT from becoming 
phosphorylated (36). In addition, evidence has 
shown that miR-146a is able to suppress other 
EGFR downstream pathways, including PI3K, 
K-Ras, cyclin D1 and MMP9 (35). PI3K is an 
upstream component of a complex network 
responsible for activating AKT as well as 
mTOR (43). Eventually, the activation of PI3K 
will promote growth and inhibit apoptosis in 
gliomas (43). Activated k-Ras will eventually 
lead to PI3K/AKT, NF-kB and ERK signalling 
pathways (44). Similarly, its aberrant activation 
is also associated with carcinogenesis (44). 
Part of Cyclin D1’s function is regulating the 
cell cycle. Downregulating Cyclin D1 has been 
shown to be effective in halting cell proliferation 
and promoting apoptosis when cisplatin was 
administered (45). Lastly, MMP9 is a component 
of the matrix metalloproteinases (MMP) 
family, which is responsible in degrading the 
extracellular matrix (46). MMP9 has been 
speculated to be responsible for the invasion of 
gliomas; furthermore, high expression of MMP9 
is correlated with high cell growth and has been 
shown to be highly present in more aggressive 
types of gliomas (46).

Let-7b suppression of GSC and glioblastomas 
through the regulation of cell cycle components 
and apoptosis 

Previously, UCMSC treated with 
lipopolysaccharide were found to contain Let-
7b in their EVs (47). Let-7b is responsible 
for halting the growth and migration of 
glioblastomas and GSC by directly targeting the 
3’ UTR region of E2F2, a transcription factor 
responsible in the cell cycle and tumorigenesis 
(48). The over-expression of Let-7b also 
suppresses cyclin D1 protein expression in 
glioblastomas (45). Lastly, Let-7b downregulates 
a distinct component called the inhibitor of the 
nuclear factor kappa-B kinase subunit epsilon 
(IKBKE) in glioblastomas (49). IKBKE is often 
found to be over-expressed in gliomas and is 
believed to play a role in inhibiting apoptosis 
through the NF-kB pathway (50). Furthermore, 
IKBKE activates NF-kB by phosphorylating its 
inhibitor, the inhibitor kappa B (50). The NF-kB 

MiR-410 inhibition of GSC and the survival of 
glioblastomas through MET

MET is a hepatocyte growth receptor 
(HGR), and upon binding of the hepatocyte 
growth factor, phosphorylates AKT to prevent 
cell apoptosis through the inhibition of caspase 
(29). It was further shown that MET regulates 
the signalling system of GSC by increasing their 
proliferation, migration rate, and almost all 
critical survival ability (30). UCMSC contain 
miR-410 within their EVs (31). The various 
outcomes in transferring miR-410 have been in 
conflict. Moreover, the over-expression of miR-
410 has been shown to increase the survival of 
lung adenocarcinoma, liver and colorectal cancer 
(31, 32). In contrast, the introduction of miR-
410 into a glioblastoma results in suppressing 
the growth of the glioblastoma by inhibiting 
the expression of MET (33). Moreover, the 
downregulation of MET sensitises the GSC to 
ionising radiation (29). Thus, the downregulation 
of MET may be a prominent solution, as it 
suppresses the aggressiveness of the GSC and 
glioblastomas in any aspects.  

MiR-146a inhibition of the growth of gliomas 
and GSC through Notch1 signalling 

An analysis was performed by Ti et al.  
to estimate the miRNAs in the EVs of UCMSC, 
comparing them to the EVs of human fibroblasts 
(34). It showed that three miRNAs were 
upregulated where only two miRNAs were 
described, miR-146a and miR-181 (34). The 
exposure of miR-146a prevents malignant 
astrocytes from being turned into GSC (35). 
It has been shown that miR-146a targets the 
expression of the Notch1 protein, which is often 
over-expressed in gliomas and glioblastomas, 
by downregulating its transcription pathway 
and, consequently, reducing the epidermal 
growth factor receptor (EGFR) downstream 
pathway activities (35, 36). EGFR is often 
amplified and over-expressed in cancer cells 
and, unexceptionally, in gliomas (37). Moreover, 
around half of the over-expressed EGFR are 
found to express the mutant EGFRvIII variant, 
resulting in the failure of ligand binding and 
autophosphorylation (38, 39). Neither the 
expression of EGFRvIII nor the over-expression 
of EGFR decreases the aggressiveness of gliomas 
(40, 41). One of the reasons for this may be that 
the constitutive activation of EGFRvIII and 
over-expressed EGFR in gliomas activates the 
downstream pathways that play an essential role 
in promoting the survival of gliomas through 
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proliferation, and resistance to chemotherapy 
(61). Often over-expressed in glioblastomas (64), 
MDM2 is an E3 ubiquitin ligase that degrades a 
tumour’s suppressor protein, called p53 (64). 
MiR-181b suppresses phosphorylated MDM2, 
reverting p53 degradation and sensitising 
gliomas to teniposide (62). Other research has 
discovered that miR-181b downregulates KPNA4 
in glioblastomas, a protein within an elaborate 
pathway that is responsible for activating NF-
kB (65). As mentioned previously, aberrant NF-
kB is often correlated with the proliferation of 
gliomas, in which its expression is best kept in 
control. MiR-181b was also shown to suppress 
glioblastoma growth in vivo (65). 

MiR-181c is highly responsible in 
controlling the invasion and proliferation of 
gliomas. Similar to miR-181a, miR-181c has 
been suspected of binding at Notch2 UTRs, 
downregulating its expression (66). MiR-
181c inhibits the epithelial-mesenchymal 
transition (EMT) of glioblastomas through the 
downregulation of N-cadherin and Vimentin 
while E-cadherin is upregulated (67). EMT is 
a term that refers to when epithelial cells lose 
their adhesion and migrate out as mesenchymal 
cells (68). It is considered a factor for glioma 
invasiveness (68). Furthermore, the involvement 
of E/N-cadherin is closely related to the EMT 
of gliomas. E-cadherin is rarely expressed in 
gliomas, whereas N-cadherin expression is 
often upregulated (68). Meanwhile, the over-
expression of Vimentin has resulted in the 
increased growth of gliomas, as it is believed to 
act as a chaperone for various protein kinases 
(69). It has been further concluded that TGF-β 
plays an essential role in controlling glioma 
invasion, in which miR-181c is able to inhibit its 
downstream pathway (67). TGF-β is a cytokine 
of which the downstream pathway is associated 
with proliferation, angiogenesis, invasion, and 
immunosuppression (70). Even worse, gliomas 
actively secrete TGF-β, self-facilitating its 
growth (70). Therefore, blocking TGF-β cytokine 
activity poses a great advantage for the treatment 
advancement of gliomas. 

MiR-181d has been reported to bind 
directly to methyl-guanine-methyl-transferase 
(MGMT) 3’ UTR, sensitising glioblastomas 
to temozolomide (71). MGMT is a protein 
responsible for repairing TMA-induced DNA 
damage that leads to temozolomide therapy 
failure (71). Furthermore, miR-181d suppresses 
multiple signalling activities, which include 
MAPK/ERK and P13K/AKT pathways through 

pathway is very complex and is responsible for 
various cell controls (51). NF-kB downregulation 
has also been associated with suppressed 
vascular endothelial growth factor (VEGF) and 
IL-8, a component and cytokine, respectively, 
responsible for angiogenesis (52). Therefore, Let-
7b is potent in downregulating NF-kB through 
IKBKE. Nevertheless, research has shown 
that IKBKE and Let-7b are components of the 
regulatory feedback loop in which a decrease 
of one component will increase the other (53). 
Thus, instead of downregulation, research has 
suggested a block of the circuit as a method for 
glioblastoma treatment (53).

MiR-181 family targeting of multiple cellular 
pathways in glioblastomas and GSC 

As previously mentioned, mir-181 was 
upregulated within UCMSC’s EVs (34). 
However, it was not mentioned which miR-
181 members were upregulated. Therefore, 
each of the members will be discussed herein 
as each member presents potential as a glioma 
treatment. The miR-181 family contains four 
members, including miR-181a, miR-181b, miR-
181c and miR-181d (54). In general, miR-181 
oligonucleotide targets cyclin B1 3’ UTR and 
downregulates its expression in gliomas and 
glioblastomas (55). Cyclin B1 is important for cell 
cycle progression and is often dysregulated in 
gliomas (56). 

MiR-181a targets the 3’ UTR region 
of Notch2 in glioblastomas (57). The 
downregulation of Notch2 was reported to 
exert the same outcome as the downregulation 
of Notch1 (58). Notch2 was also suspected of 
participation in the EGFR/P13K/AKT pathway 
in conjunction with Notch1 (58). However, the 
exact mechanism of Notch-2 in gliomas is still 
debatable (57). The over-expression of Notch2 
stimulates the malignancy of gliomas and GSC 
while the introduction of mir-181a successfully 
inhibits them (57). Another study confirmed 
miR-181a as a potential glioblastoma treatment 
by sensitising the glioblastomas to radiation 
through B-cell lymphoma 2 protein (Bcl-2) 
downregulation, an anti-apoptotic protein (59, 
60). 

MiR-181b sensitises gliomas and GSC to 
various chemotherapies, such as temozolomide 
and teniposide, by targeting the 3’ UTRs of 
both MDM2 and MEK1, respectively (61–63). 
MEK1 is one component in the MAPK pathway, 
a pathway that is often highly expressed in 
gliomas responsible for regulating cell apoptosis, 
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Perspectives and Challenges

MiRNAs contained within UCMSC’s EVs 
pose a promising prospect as a treatment for 
gliomas in the future. The UCMSC’s EVs are 
equipped with diverse miRNAs that inhibit 
multiple downstream pathways accountable 
for gliomas as well as GSC survival. These 
miRNAs regulate cell signalling that is important 
for proliferation, angiogenesis, invasion, 
chemotherapy effectiveness, and apoptosis. 
Furthermore, prominent signalling components 
and pathways that are often over-expressed in 
gliomas, such as MAPK/ERK, P13K/AKT, MAPK 
and cell cycle regulators, were downregulated. 
Each miRNA possesses capabilities in inhibiting 
gliomas through various pathways that will 
intersect eventually and amplify the inhibition 
effects of miRNAs. In addition to inhibiting 
prominent pathways, some miRNAs inhibit the 
same components of gliomas’ aggressiveness, 
including Notch2, Bcl-2, K-ras and the AKT 
protein. In addition, an miRNA is not only 
released by UCMSC within the extracellular 
vesicle, but a range of miRNAs are also released 
by certain types of cancer (12). Certain cancers 
release unique profiles of miRNAs that differ 
from one cancer cell to another (12). Therefore, 
miRNAs can not only be used for treatment 
purposes by suppressing over-reactive cancer 
cells’ mRNAs, but they can also be used as cancer 
biomarkers for diagnostic purposes (12).

Nevertheless, there are still challenges 
needing to be solved in using UCMSC as a future 
treatment for gliomas. Cytokines released by 
UCMSC function as growth factor for gliomas 
instead of restricting them, for example, IL-6, 
GRO, MCP-1 and IL-8 (7). IL-6 activates the 
JAK/STAT3 pathway in human gliomas, an 
activation that is correlated with the proliferation 
and invasion of gliomas (79). However, the 
JAK/STAT3 pathway is not regulated through 
any identified miRNAs derived from UCMSC’s 
EVs. GBM exerts the IL-8 autocrine mechanism 
and expresses a high number of IL-8 receptors, 
such as CXCR1 and CXCR2 (80). Therefore, 
IL-8 is suspected to be a potent regulator in 
glioma survival. Moreover, it was reported that 
IL-8 plays a certain part in regulating NF-kB 
in gliomas (80). In this case, though miRNAs 
inhibit NF-kB through the downregulation of 
IKBKE, the downstream mechanism of IL-8 
should be taken into consideration. Meanwhile, 
the detailed molecular mechanism involving 
MCP-1 and GRO in gliomas is still unclear. 

K-ras activation (44). MiR-181d directly targets 
the 3’ UTR of K-ras and Bcl-2 (44). As previously 
discussed, these pathways and components are 
essential for glioma tumourigenesis. Moreover, 
miR-181d even successfully inhibits the growth of 
glioblastomas in vivo (44). 

MiR-145 limitation of GSC and GBM 
aggressiveness by ABCG2 and ADAM19, 
respectively. 

MiR-145 has been found to be contained 
in UCMSC’s EV’s (17), and it serves as a potent 
regulator in downregulating the ATP-binding 
cassette, sub-family G, member 2 (ABCG2) 
expressions in GSC (72). It is widely known that 
ABCG2 is a transporter protein that transports 
xenobiotic drugs out from tumour cells. An 
important factor, GSC is resistant to multiple 
chemotherapeutic drugs (73). Another study 
reported that by downregulating ABCG2, 
GSC are more vulnerable to temozolomide 
(74). Moreover, ABCG2 serves as one factor 
of gliomas’ stemness and roles in invasion as 
well as migration (75, 76). MiR-145 directly 
targets ADAM19 3’ UTR downregulating a 
glioblastoma’s ability for EMT (77). The resulting 
expression of N-cadherin, E-cadherin, and 
Vimentin show similar results when miR-181c is 
introduced (77).

Multiple miRNAs obtained in UCMSC EVs 
potentiate gliomas’ survival

Gliomas are known to express multiple 
kinds of cytokines to enhance their survival 
and migration. However, other than expressing 
cytokines benefiting their own growth, it was 
also discovered that gliomas release miRNAs, 
found in the serum of patients’ blood (78). 
MiRNAs released by gliomas may affect 
important regulations in many biological 
processes. Therefore, a full range of miRNAs 
were addressed, and their expressions were 
calculated. Several miRNAs, such as miR-1252, 
miR-4434, and miR-4669, have been found to 
be upregulated significantly (78). Interestingly, 
these miRNAs are also found within UCMSC’s 
EVs in their primary form (14). However, less 
is known concerning their function in the 
development of gliomas’ survival, let alone their 
molecular mechanisms. It is therefore suggested 
to conduct more research on these miRNAs 
as they pose a potential treatment or threat to 
gliomas. 
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glioma tissues used for miRNAs quantification 
are collected and performed in mainland China. 
Therefore, it is suggested that researchers 
planning to perform similar research take genetic 
bias into consideration.

Conclusion

This review summarises a range of potential 
miRNAs as glioma treatments contained 
within UCMSC’s EVs. Additionally, this review 
highlights the utilisation of these miRNAs 
in inhibiting multiple prominent signalling 
pathways responsible for overall glioma and 
GSCs’ survival, proposing this method as an 
effective glioma treatment in the future. 
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