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Introduction

Bacteroides species are non-spore forming, 
anaerobe and gram-negative bacteria. There are 
more than 20 different species of Bacteroides. 
These bacteria act as normal flora in the intestine 
to maintain healthy intestinal microflora in 
humans. Bacteroides fragilis (B. fragilis) has 
two classes: non-toxigenic B. fragilis (NTBF) 
and enterotoxigenic B. fragilis (ETBF) (1). The 
differences between NTBF and ETBF are the 
presence of B. fragilis toxin (bft) gene and its 
ability to produce biofilm. BFT product is a 

20 kDa zinc-dependent metalloprotease toxin, 
also known as fragilysin or BFT (1–3). BFT plays 
an important role in intestinal inflammation and 
tissue injury by damaging the tight junction and 
increasing intestinal permeability. Furthermore, 
it has been proven that tissue inflammation 
and injury promote cancer formation (1, 4). 
Simultaneously, the biofilm produced by 
B. fragilis induces carcinogenesis. Fortunately, 
only ETBF encompasses bft and can produce 
biofilms. Hence, NTBF does not harm the 
intestinal tract (5).
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Abstract
The Bacteroides fragilis (B. fragilis) produce biofilm for colonisation in the intestinal 

tract can cause a series of inflammatory reactions due to B. fragilis toxin (BFT) which can lead 
to chronic intestinal inflammation and tissue injury and play a crucial role leading to colorectal 
cancer (CRC). The enterotoxigenic B. fragilis (ETBF) forms biofilm and produce toxin and play 
a role in CRC, whereas the non-toxigenic B. fragilis (NTBF) does not produce toxin. The ETBF 
triggers the expression of cyclooxygenase (COX)-2 that releases PGE2 for inducing inflammation 
and control cell proliferation. From chronic intestinal inflammation to cancer development, it 
involves signal transducers and activators of transcription (STAT)3 activation. STAT3 activates by 
the interaction between epithelial cells and BFT. Thus, regulatory T-cell (Tregs) will activates and 
reduce interleukin (IL)-2 amount. As the level of IL-2 drops, T-helper (Th17) cells are generated 
leading to increase in IL-17 levels. IL-17 is implicated in early intestinal inflammation and promotes 
cancer cell survival and proliferation and consequently triggers IL-6 production that activate 
STAT3 pathway. Additionally, BFT degrades E-cadherin, hence alteration of signalling pathways 
can upregulate spermine oxidase leading to cell morphology and promote carcinogenesis and 
irreversible DNA damage. Patient with familial adenomatous polyposis (FAP) disease displays 
a high level of tumour load in the colon. This disease is caused by germline mutation of the 
adenomatous polyposis coli (APC) gene that increases bacterial adherence to the mucosa layer. 
Mutated-APC gene genotype with ETBF increases the chances of CRC development. Therefore, 
the colonisation of the ETBF in the intestinal tract depicts tumour aetiology can result in risk of 
hostility and effect on human health. 
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contributing to CRC formation are different; for 
instance, E. faecalis damages the DNA through 
ROS, colibactin-producing E. coli produces 
colibactin that damages the DNA, and ETBF 
produces BFT that contributes to inflammation 
and immune-cell infiltration (13).

Intestinal Dysbiosis, Inflammation and 
Colon Cancer

Normal flora is advantageous to a person 
as it maintains intestinal health and gut 
homeostasis. However, as the bacteria such as 
ETBF in the gut undergoes dysbiosis, it brings 
harmful effects to the person. According to 
Deng et al. (14), a correlation was observed 
between microbiota imbalance and cancer 
progression, while Liu et al. (15) claimed 
that CRC development is associated with 
intestinal microecology disorder. Imbalance 
among microbiota leads to bacterial infection 
that can progress to chronic inflammation. 
One of the main environmental risk factors 
contributing to CRC development is chronic 
intestinal inflammation. Chronic inflammation 
alters cellular microenvironment, enhances 
gene mutation, inhibits apoptosis and induces 
neovascularisation and cell proliferation that 
causes pre-cancerous conditions, eventually 
leading cancer (16). Simultaneously, chronic 
inflammation causes genetic alterations 
that directly affect the STAT3 pathway and 
promoting carcinogenesis (17). There are 
three stages involved in tumour development, 
namely initiation, promotion and progression 
(18). During initiation and progression, cancer 
cells and microbes interact, both producing 
genetic and inflammatory–immunological 
factors that are responsible for their survival and 
replication (19). In tumour progression, tumour 
cells interact with the inflammatory cells in 
the tumour microenvironment. These tumour 
cells secrete inflammatory–immunological 
factors to attract the inflammatory cells and 
activate the stromal cells. Simultaneously, 
both inflammatory and activated stromal 
cells start to produce various soluble factors, 
including cytokines, chemokines, growth 
factors and protease. These soluble factors play 
an important role in facilitating the growth, 
differentiation and survival of tumour cells. 
Hence, it promotes tumour progression and 
promotion. Additionally, cytokines or microbes 
promote cancer by changing genetic sequence 
(18). During gene mutation, epithelial cells 

In the United States, colorectal cancer (CRC) 
is the third most common cancer in both genders. 
It is also the second most common cancer-related 
death, especially for older patients who are ≥ 60 
years old. In 2013, the American Cancer Society 
stated that there were 102,480 new cases of 
CRCs that led to the death of 50,830 people. 
Moreover, CRC is the fourth leading cancer 
resulting in deaths worldwide. Inflammatory 
bowel disease (IBD) and genetic mutations 
are factors predisposing an individual towards 
colon cancer; this indicates that CRC has a high 
mortality rate (6–8).

Microbes are capable in promoting cancer 
development through several routes such as 
activation of chronic inflammation, alteration 
of tumour microenvironment and production 
of toxins that damage DNA (9). When there 
is chronic ETBF colonisation in the intestine, 
it stimulates chronic intestinal inflammation, 
triggering signal transducers and activators 
of transcription 3 (STAT3) activation, which 
contributes to interleukin (IL)-17 production. 
IL-17 is involved in colon inflammation. BFT 
produced by ETBF causes the alteration of 
signalling pathways and production of reactive 
oxygen species (ROS) that leads to DNA damage 
and cleavage of E-cadherin (3, 10). In the below 
review, we have provided a general information 
regarding BFT produced by ETBF, triggering 
CRC development.

Literature Review

Colon Cancer Associated with Microbes

In the human gastrointestinal tract, there 
are nearly 100 trillion microbes, out of which 
30% make up normal flora in the intestine. 
Meanwhile, the normal flora is characterised 
into beneficial and harmful microbes. Beneficial 
microbes promote nutrition, including 
production of vitamins in the intestine, and 
prevent disease formation. However, harmful 
microbes produce toxin and carcinogenic 
substances in the intestine. These harmful 
substances may cause cancer (11). There are 
many types of bacteria that stimulate a variety 
of cancer formation through their respective 
site of inflammation (12), e.g. bacteria, such as 
Enterococcus faecalis (E. faecalis), colibactin-
producing Escherichia coli (E. coli) and ETBF 
are involved in CRC development. However, 
the mechanisms between each bacterium in 
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COX Enzymes Involved in Inflammation, 
Carcinogenesis and Biomarker

Chronic inflammation is a principal factor 
that contributes to carcinogenesis. Prostaglandin 
is a paracrine hormone that plays an important 
role in inflammation. Cyclooxygenase (COX) 
is the rate-limiting enzyme responsible for 
producing prostaglandins (32). COX-1 and  
COX-2 are the isoforms of COX enzymes that 
break down arachidonic acid into prostaglandins. 
COX-2 plays an important role in maintaining 
environment for the development of cancer 
inflammation. COX-2 is normally expressed in 
epithelial and stromal cells, and the expression 
level is increased in both inflammation and 
cancer due to the presence of proinflammatory 
cytokines. Additionally, BFT triggers colonic 
epithelial cells to express COX-2 but not COX-1. 
COX-2 releases prostaglandin E2 (PGE2) that 
triggers pain and inflammation at the site of 
tissue injury. Simultaneously, PGE2 controls 
cell proliferation by binding at the cell receptor 
and activating oncogenic signalling pathways. 
Thus, it is proven that COX-2 plays an important 
role in carcinogenesis and cancer progression 
by promoting cell proliferation, angiogenesis 
and cancer stem cell formation; inhibiting cell 
apoptosis; and heightening metastatic potential 
through producing PGE2 (3, 17, 18, 33–35).

In certain studies, it is stated that aspirin 
and non-steroidal anti-inflammatory drugs have 
the ability to inhibit the activity of COX enzyme, 
which reduces the inflammatory response; 
thus, it delays CRC occurrence. Fortunately, 
COX-1 and COX-2 act as biomarkers for 
screening purposes. The biomarker is defined 
as any substance, structure or process that 
is measurable in the body to determine the 
incidence of a disease (36). It is commonly 
detected in circulation and body fluids. COX-1 
is present in most cells; thus, it is not a specific 
biomarker. However, COX-2 is only detected 
when the inflammation is stimulated by 
trauma, release of cytokines and stimulation 
of arachidonate metabolism by a toxin such as 
BFT. Thus, COX-2 acts as a useful biomarker 
to detect inflammatory responses (37–39). 
COX-2 is also a useful biomarker for colorectal 
carcinogenesis screening. The level of COX-2  
biomarker in the blood is dependent upon 
epithelial cell proliferation, apoptosis inhibition 
and neoangiogenesis. Patients with CRC have 
high levels of COX-2 compared to normal 
individuals (40–42), indicating more aggressive 
growth rate and higher mortality rate. This 

replicate rapidly and develop into a hyperplastic 
epithelium, which progresses into adenomas and 
then towards adenocarcinomas. Both adenomas 
and adenocarcinomas affect the growth rate of 
colonic epithelial cells and improve the cells’ 
toleration towards apoptosis, and abnormal cells 
escape from the immune cells. Furthermore, 
these adenocarcinomas begin to invade 
submucosa, turning into cancer. When the 
growth of malignant cells continues, the tumour 
continues to spread in the colon (13, 20). Thus, 
carcinogenesis becomes more efficient.

IBD is an example of chronic intestinal 
inflammation that is associated with ETBF. 
Pathogenic bacteria are capable of stimulating 
infection, inflammation and carcinogenesis, 
whereas the relationship between IBD and CRC 
is well established (21). Surprisingly, patients 
with IBD show a high level of immunoglobulin 
(Ig) G antibodies, IL-6, vascular endothelial 
growth factor (VEGF) and tumour necrosis factor 
(TNF). IgG antibodies are responsible for killing 
bacteria moving into the intestinal lumen (10). 
Simultaneously, IL-6 and VEGF are responsible 
for STAT3 activation. IBD is also known as 
ulcerative colitis (UC) and Crohn’s disease (CD). 
This chronic intestinal inflammation increases 
the risk of colitis-associated CRC, the probability 
of which depends on multiple casual factors, 
including severity, duration of inflammation 
in the intestine and gut microbiota imbalance 
(22–26). Patients with UC or CD have 2–3 
folds higher incidence of CRC when compared 
to healthy individuals. It is also stated that 
patients with UC and CD have 3.7% and 2.5%, 
respectively, higher risks of CRC compared to 
a normal healthy person. This indicates that 
patients with UC tend to be more susceptible to 
CRC than those with CD (27, 28). Furthermore, 
it is evident that the large intestine tends to 
have a higher risk of CRC compared to the 
small intestine, which can be attributed to the 
higher amount of bacteria (29). Simultaneously, 
people with IBD and CRC have a higher quantity 
of ETBF in the intestine or stool examination 
compared to healthy persons (30). Additionally, 
ETBF are biofilm producers; they can reduce or 
redistribute E-cadherin in the colonic epithelial 
cells, trigger the production of IL-6 by epithelial 
cells, activate STAT3 pathway and enhance cells 
proliferation at the site of crypt epithelial in 
normal colon mucosa. This shows that biofilms 
are associated with the risk of colon cancer 
development (31).
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highly increases the chance of getting a tumour 
as a result of chronic inflammation. Additionally, 
STAT3 activation promotes the accumulation of 
tumour regulatory T-cell (Tregs) and blocks the 
generation of anti-tumour immune responses, 
which give an adverse effect to the body. This 
abnormal persistent STAT3 activation increases 
the cancer cell tolerance, prevents rejection 
of cancer by the immune system, reduces the 
effectiveness of immunotherapy and enhances 
the effectiveness of oncogenesis (10, 17, 44, 50, 
51). Activated STAT3 predominantly detected 
in human cancers is constitutively activated 
and depicts its association with neoplasms 
(45). Patients with IBD tend to show STAT3 
activation and a high level of Th17 cells and  
IL-17. The level of activated STAT3 in patients 
with IBD and dysplasia is different from patients 
with IBD and without dysplasia. Patients 
with IBD and dysplasia show a higher level of 
activated STAT3 compared to those without 
dysplasia. Simultaneously, the level of activated 
STAT3 increases together with the continuum 
of dysplasia to colitis-associated cancer (10, 
47, 52). It is clear that B. fragilis can either be 
toxigenic or non-toxigenic; the latter does not 
activate STAT3 because it does not produce BFT. 
Therefore, NTBF does not contribute to colon 
cancer development, but ETBF does (48).

Are Tregs, Th17 and IL-17 Good or Bad?

In a normal healthy condition, Tregs play 
an important role in inflammatory responses 
and intestinal immune homeostasis. They 
express high levels of IL-2 receptor and produce 
endogenous IL-2, which inhibits the production 
of IL-17. This process reduces intestinal 
inflammation and prevents carcinogenesis. 
However, when ETBF colonises a particular site 
of the colon, it produces a large amount of BFT 
damaging the intestinal mucosa to initiate ETBF-
triggered colitis with the activation of the STAT3 
pathway. This leads to direct contact between 
Tregs and ETBF and promotes Tregs activation. 
Activated Tregs lack the ability to produce 
endogenous IL-2 (53–56). Instead of producing 
endogenous IL-2, Tregs consume exogenous 
IL-2 for their survival. The consumption of 
exogenous IL-2 by Tregs reduces the levels of 
exogenous IL-2 and produces an environment 
that favours the growth of Th17 cells. As the levels 
of IL-2 drop, Th17 cells are no longer inhibited and 
undergo expansion to produce a large quantity 
of naïve T-cells. This naïve subset of T-cells 
then differentiates into Th17 cells in excess.  

suggests that COX-2 expression is correlated to 
the aggressiveness of growth rate and mortality 
rate (43).

ETBF Activates STAT3

ETBF is associated with IBD due to the 
abnormal regulation of immune response 
to bacteria. The systemic adaptive immune 
response is activated to eliminate foreign 
antigens in the body. This action eventually 
reduces intestinal mucosal tolerance (10, 44). 
Although immune cells kill foreign antigens, 
neutrophils and Th17 cells contribute to 
inflammation and tumourigenesis. Transcription 
factors are known as STAT protein family 
comprising seven members. Each STAT protein 
responds to its specific cytokines. They play an 
important role in regulating immune responses 
by controlling Th cell types generation (3, 17, 44, 
45); for instance, the activation and generation 
of Th17 cells require transcription factor STAT3 
protein (46). The roles of STAT3 protein 
include promotion of cell proliferation, cell 
survival, inflammation, cellular transformation, 
metastasis of cancer, blood vessel formation 
and tumour-promoting inflammation (45, 
47). Moreover, STAT3 is a major intrinsic 
pathway for cancer inflammation. It induces 
genes in tumour cells that are responsible for 
inflammation. Within a tumour cell, it exhibits 
an overly expressed STAT3 pathway (17).

ETBF has the ability to activate STAT3 
rapidly in both colonic epithelial cells and colonic 
mucosal immune cells through phosphorylation 
and nuclear translocation. However, STAT3 
activation first occurs in colonic mucosal 
immune cells followed by colonic epithelial cells. 
To activate STAT3 in immune cells, epithelial 
cells should respond in the production of 
cytokines, such as IL-6, IL-10 and IL-23. Besides 
cytokines, growth factors including VEGF 
and fibroblast growth factor (FGF2), are also 
involved in activating STAT3. When ETBF and 
BFT first interact with colonic epithelial cells, 
they stimulate early STAT3 activation in colonic 
mucosal immune cells. This STAT3 activation 
continuously rises slowly until it reaches the peak 
level. The peak indicates that ETBF activates the 
immune system due to barrier dysfunction (10, 
48, 49). During ETBF-induced colitis, it activates 
both STAT3 and Th17 immune response in the 
colonic mucosa. STAT3 activation induces pro-
oncogenic inflammatory pathways and increases 
the permeability of mucosa. Although STAT3 
activation is long-term and lasts for months, it 
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the cleavage of E-cadherin correlates with the 
changes of cell morphologies. Simultaneously, 
degradation of E-cadherin also promotes the 
binding of nuclear localisation of β-catenin 
and T-cell factor-dependent transcriptional 
activator (40, 57, 71). This binding promotes 
gene regulation and transcription. Additionally, 
β-catenin plays an important role in wingless 
and int (WNT) signalling pathway, promoting 
cell proliferation and epithelial-mesenchymal 
transition and enhancing the expression of 
proto-oncogene (20, 72). In primary colorectal 
tumours, cells in the centre of the tumour exhibit 
the presence of β-catenin and E-cadherin. 
However, when the cells move away from the 
centre of the tumour, they exhibit high amounts 
of nuclear β-catenin, and the junction of 
E-cadherin is lost (73).

E-cadherin plays an important role in 
maintaining the morphology of cells. There is a 
relationship with the E-cadherin and the apical 
F-actin ring of the intestinal epithelial cells’ 
secretion. When the loss of E-cadherin increases, 
the integrity of the apical F-actin is lost, resulting 
in the increase in cell volume and chloride 
secretion, and cell and epithelial barriers become 

This shows that colonisation of ETBF promotes 
the accumulation of both Tregs and Th17 cells 
(55–60). Th17 cells start to produce large amounts 
of cytokines, including TNF and IL-17. These 
cytokines promote cell survival and proliferation 
during injuries. Although Th17 cells heal an 
injured site, they turn into pathogenic Th17 cells 
when deregulated. These pathogenic Th17 cells 
initiate chronic inflammatory condition. IL-17 
produced by pathogenic Th17 cells are involved 
in an early inflammatory stage of the injuries. 
It promotes tumour cell survival, proliferation, 
tumour neovascularisation and metastasis, which 
allow carcinogenesis (61–63). Additionally, 
tumour cells and fibroblasts are stimulated by  
IL-17 to produce high amounts of angiogenic 
factors for angiogenesis (64, 65). IL-17 can 
activate STAT3 pathway indirectly through IL-6 
(49). When IL-17 binds to IL-17 receptor-bearing 
tumour cells, it stimulates IL-6 production that 
is highly important for STAT3 pathway activation 
as mentioned above. This STAT3 pathway 
activation contributes to several characteristics, 
such as cancer proliferation, anti-apoptosis and 
angiogenesis, that favour carcinogenesis in the 
colon (63, 66, 67). This shows that there is a 
relationship between STAT3 pathway and Tregs 
in contributing to CRC formation when ETBF is 
accumulating in the intestinal tract, as shown in 
Figure 1 (68). To some extent, STAT5 and STAT6 
have been reported to be involved in inhibiting 
anti-tumour immunity. When all STAT3, 5 and 
6 are activated together, it highly enhances the 
tumourigenesis effect (17).

Cleavage of E-Cadherin Stimulate Cell 
Proliferation

Apart from inflammation, BFT alters the 
structure and function of colon epithelial cells 
by degrading E-cadherin (20). E-cadherin is a 
120-kDa glycoprotein that is the major structural 
protein in zonula adherens and is also known to 
be a tumour suppressor and zonula adherence 
protein. This protein is responsible for the 
epithelial polarity. In normal conditions, the 
expression of E-cadherin is linked to cellular 
functions, including apoptosis and homotypic 
cell–cell adhesion (69–71). Unfortunately, 
when E-cadherin interacts with BFT in the 
intestinal epithelial cells, it degrades E-cadherin 
rapidly in an ATP-independent manner. This 
cleavage promotes colonic injury, inflammation 
and loss of membrane-association, resulting 
in morphological changes, and enhances 
cellular metastatic potential. It is proven that 

ETBF

Intestinal lumen

Intestinal immune system

IL17 receptor-bearing 
tumour cells

↓ IL-2

↑ Th17

↑ IL17

TNF

Epithelial cells

Tregs

BFT

Cell proliferation

Inflammation

Carcinogenesis

STAT3 activation

Figure 1. The mechanism of carcinogenesis 
through abnormal intestinal immune 
system



Malays J Med Sci. Jul–Aug 2020; 27(4): 9–21

www.mjms.usm.my14

signalling pathways and immune response that 
is produced naturally within biological systems. 
It consists of superoxide, hydroxyl radical and 
hydrogen peroxide. However, as the amount 
of ROS becomes excessive, it imparts negative 
effects in the disruption of redox homeostasis 
(Figure 4). This excessive ROS induces oxidative 
stress. It oxidises cellular components, including 
DNA, lipids and proteins, within the cells.  

more permeable (74, 75). This contributes to 
intestinal inflammation, diarrhoea and colon 
carcinogenesis.

Alteration of the Signalling Pathway of 
Colorectal Cancer

BFT is involved in many colonic epithelial 
cell signal transductions. When BFT disturbs 
or activates the signalling pathway, it brings 
adverse effects to the body and can lead to 
colorectal tumourigenesis (Figure 2). The colonic 
epithelial cell signal transduction transpires 
through the nuclear factor kappa-light-chain-
enhancer of activated B-cells (NF-κB), WNT 
and mitogen-activated protein kinase (MAPK) 
signalling pathways (76, 77). BFT can stimulate 
NF-κB pathway in the intestinal epithelial cells 
with the expression of heme oxygenase-1 (HO-1) 
and cytokines to induce mucosal inflammation. 
This pathway has the ability to enhance the 
survival of neoplastic cells by preventing them 
from undergoing apoptosis, leading to tumour 
formation (78, 79). Furthermore, in Figure 2, it 
shows that when NF-κB of intestinal epithelial 
cells is activated for a long time, it induces the 
activity of nitric oxide synthase that breaks down 
L-arginine to produce nitric oxide, which can 
damage cellular DNA (72, 80). WNT signalling 
pathway is important to maintain the structures 
of the intestinal epithelium. However, WNT 
signalling pathway contributes negatively and 
affects cells which are extremely important 
for colorectal carcinogenesis and progression 
(81). As WNT signalling pathway is activated, 
it weakens tight junctions and reduces cellular 
adhesion. This allows the cancer cells to undergo 
migration and metastasis. Hence, cancerous cells 
can migrate to another organs (82).

Spermine oxidase is a catabolic enzyme 
that increases ROS, which can be upregulated by 
BFT (83). In normal conditions (Figure 3), ROS 
acts as an important mediator in multiple cell 

Immune response Multiple cell signalling pathways

Spermine oxidase (SMO)

Relative Oxygen Species (ROS) 
– mediator

Figure 3. Normal condition of the SMO and ROS that helps in immune response and cell signalling pathways

 ● Reduce cell adhesion
 ● Weaken tight junction
 ● Cancer cell migrate

Damage cellular DNA

ETBF BFT

BFT

Epithelial cell

Activation of signaling pathway

WNTNF-κB

Nitric oxide synthase

Nitric oxide

Figure 2. The role of the signalling pathways when 
epithelial cells contact BFT
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Once the cellular components are oxidised, 
it generates irreversible damage to host cells. 
Additionally, ROS plays an important role in 
the survival of cancer cells, enhancing the 
effectiveness of carcinogenesis and aggravating 
cancer formed in the body (84–86).

Carcinogenesis

Irreversible 
damage

↑ Relative Oxygen Species (ROS)  
– mediator

Spermine oxidase (SMO) 
– upregulated

DNA Lipid Protein

Figure 4. The adverse effect of SMO contacted BFT

Familial Adenomatous Polyposis

The combination of both genetic and 
environmental factors contributes to CRC 
formation. It is estimated that > 35% of CRC 
development is due to genetic predisposition, 
wherein nearly 1% of all CRCs are attributed 
to familial adenomatous polyposis (FAP) (87, 
88). FAP is an autosomal dominant inherited 
disorder that describes the development of 
numerous colorectal adenomatous polyps. These 
polyps are able to develop in the teenager’s 
colon. Meanwhile, the number of polyps formed 
in the colon depends on the age of a person, 
which means the number of polyps is directly 
proportional to the age of a person. If these 
polyps are not removed from the colon, they may 
transform from benign to malignant, developing 
CRC. The source of FAP disease is mainly due 
to germline mutation in the adenomatous 
polyposis coli (APC) gene (89–91). This APC 
mutation occurs due to frameshifts, insertions 
or deletions that may introduce a premature 
stop codon during the halfway through the 
transcription process. These early-introduced 
premature stop codons in the gene sequence lead 
to incomplete/truncated APC protein formation. 
Thus, the normal function of APC protein is 
lost, eventually facilitating carcinogenesis (92). 

Additionally, germline mutations along with 
somatic mutations of the normal allele or loss 
of the normal allele lead to inactivation of APC. 
Once APC is inactivated, it precisely commences 
carcinogenesis (93). In normal conditions, APC 
pathway acts as a gatekeeper, controlling a part 
of WNT signalling pathway. Unfortunately, 
when APC is mutated, the function of APC 
pathway is lost or inactivated. This inactivation 
of the APC pathway results in the activation of 
WNT signalling pathway. This characteristic is 
mainly found in CRC (94, 95). Moreover, APC 
mutation has the ability to alter bacteria–host 
epithelial interaction, where it allows the bacteria 
to attach onto the mucosa (96). If a person 
has the APC-mutated gene and is exposed to 
ETBF, the chances of developing CRC are high. 
Concurrently, high amount of tumour load is 
displayed in the person’s colon (97).

Conclusion

The human gastrointestinal tract contains 
its own bacterial flora that benefit humans daily. 
B. fragilis is one of them and consists of two 
classes, namely NTBF and ETBF. The differences 
between both the classes is the presence of bft. 
ETBF is able to produce BFT that can disrupt 
the intestinal environment and promotes 
inflammation. Simultaneously, BFT degrade 
E-cadherin and causes inflammation. IBD is a 
chronic intestinal inflammation associated with 
ETBF and can induce CRC. However, patients 
with CD have lower risk of developing CRC as 
compared to those with UC. Patients with IBD 
exhibit STAT3 activation due to the stimulation 
of immune response that favours Th17 cell 
generation. As the levels of Th17 cell increase, it 
brings a huge disadvantage to the intestinal tract 
due to the production of IL-17. Furthermore, 
IL-17 stimulates the production of IL-6 that 
is required to activate STAT3. This indicates 
that the STAT3 pathway activates for a long 
time. Long-term STAT3 activation blocks anti-
tumour immune response, which supports the 
growth of cancer cells. Thus, STAT3, Th17 and 
IL-17 are highly important in carcinogenesis. 
Concurrently, the production of proinflammatory 
cytokines at the site of inflammation triggers 
the production of COX-2 enzymes that release 
PGE2. COX-2 is also known for its carcinogenic 
abilities due to the production of PGE2 that 
controls cell proliferation. Additionally, BFT 
affects signal transductions, such as WNT,  
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