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Abstract
Background: Specific language impairment (SLI) diagnosis is inconvenient due to manual 

procedures and hardware cost. Computer-aided SLI diagnosis has been proposed to counter 
these inconveniences. This study focuses on evaluating the feasibility of computer systems used to 
diagnose SLI.

Methods: The accuracy of Webgazer.js for software-based gaze tracking is tested under 
different lighting conditions. Predefined time delays of a prototype diagnosis task automation 
script are contrasted against with manual delays based on human time estimation to understand 
how automation influences diagnosis accuracy. SLI diagnosis binary classifier was built and tested 
based on randomised parameters. The obtained results were cross-compared to Singlims_ES.exe 
for equality.

Results: Webgazer.js achieved an average accuracy of 88.755% under global lighting 
conditions, 61.379% under low lighting conditions and 52.7% under face-focused lighting 
conditions. The diagnosis task automation script found to execute with actual time delays with 
a deviation percentage no more than 0.04%, while manually executing time delays based on 
human time estimation resulted in a deviation percentage of not more than 3.37%. One-tailed test 
probability value produced by both the newly built classifier and Singlims_ES were observed to be 
similar up to three decimal places.

Conclusion: The results obtained should serve as a foundation for further evaluation of 
computer tools to help speech language pathologists diagnose SLI.
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Introduction

Specific language impairment (SLI), also 
known as developmental language disorder 
(DLD) is a disorder which causes delayed 
language development without physical nor 
intellectual inhibiting factors. Individuals 
suffering from SLI experience difficulties 
producing words verbally, learning new words 
and making conversation. More prominent 
symptoms also include long delays in order 
to comprehend a written or spoken sentence 

(1). Being especially common among children 
and adolescents, SLI affects approximately 7% 
to 8% of children in kindergarten worldwide, 
and the problems introduced by SLI can 
persist into adulthood if it is not diagnosed 
and treated correctly (1). Traditionally, 
SLI diagnosis is carried out manually by 
speech-language pathologists and therapists. 
Standardised tests involving questionnaires 
began to be used in schools to screen for 
cases of language impairments. Following 
the integration of technology in the medical 
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hypotheses were raised, corresponding to the two 
mentioned goals, respectively.

H1: The use of costly equipment in the SLI 
diagnosis process can either be replaced or 
eliminated.

a) Eye-tracking hardware which is used to 
infer the gaze location of patients can be 
replaced via software or computer vision 
algorithms.

H2: An integrated, computerised system or tool 
to assist speech-language pathologists in 
SLI diagnosis can be built.

a) Manual SLI diagnosis procedures, such 
as the binary picture matching task, can 
be automated via computer programmes 
to reduce diagnosis cost and increase 
diagnosis accuracy.

b) Calculations and statistical methods for 
research and practice in neuropsychology 
can be applied and integrated into the 
computer programme.

With respect to H1-a, H2-a and H2-b, several 
experiments with different evaluation strategies 
have been carried out in an attempt to affirm the 
validity of the hypotheses which has been put 
forth. The rest of this paper focuses on explaining 
these evaluation strategies, the results of the 
experiments and discussions pertaining to the 
results. 

Methods

Software Tools

Gaze behaviours have been studied using 
eye tracking with those suffering from SLI 
(4). Eye tracking is a common method for 
understanding human attention in psychology 
experiments, human-computer interaction 
studies and medical research (5). Prior research 
on state-of-the-art algorithms to achieve similar 
goals has revealed that eye tracking can be 
achieved without the use of hardware specific 
to eye tracking. One of the tools for eye tracking 
without hardware is WebGazer.js.

WebGazer.js is a self-calibrating eye-
tracking JavaScript library that uses typical low-
cost webcams found on personal computers to 
infer the eye-gaze locations of web visitors on a 
page in real time. The way web visitors interact 
with the web page using a point-and-click device 

field, sophisticated tools such as eye trackers 
and electroencephalogram (EEG) biosensors 
became more accessible, which allowed them 
to more accurately diagnosis SLI. However, 
SLI diagnosis remains a daunting task because 
eye trackers, EEG biosensors and the like 
are expensive and not readily available to all 
therapists and researchers. A brief review 
reveals that mid-range eye trackers can cost 
up to USD10,000 and high-end eye trackers 
mainly used for research purposes typically cost 
even more (2). Even low-end eye trackers which 
are not recommended for research use cost as 
much as USD1,000 (2). EEG biosensors which 
evaluate electrical activity in the brain cost up 
to USD25,000 and are mainly available only in 
professional health facilities such as hospitals. 
Other problems include the lack of integration 
among tools used to diagnose SLI, as well as the 
lack of automation or computer-aided systems 
to help increase the effectiveness and efficiency 
of SLI diagnosis. In order for a complete and 
thorough diagnosis to take place, the pathologist 
or therapist in charge has to learn how to utilise 
different tools, many of which are not within 
their field of expertise. This often makes the 
already complex task of diagnosing and treating 
SLI unnecessarily difficult and even chaotic. As 
a result, the current process of diagnosing with 
SLI is inefficient. Although major effort has been 
placed in building an automated screening tool 
for SLI-related disorders in the past decade, 
not much has been put to practical use locally 
because speech in children differs throughout 
their development and the expert knowledge 
of speech-language pathologists required to 
apply appropriate concepts on a per-case basis 
cannot be readily duplicated by machines. As a 
result, SLI diagnosis still requires time-intensive 
assessments, which are often not administered 
until parents, doctors or teachers notice the 
abnormalities in children suffering from SLI (3).

Based on the problems and inconveniences 
which have been previously mentioned, it is 
clear that solving the issue requires, firstly,  
the dependency on costly equipment which is 
not widely available in our everyday lives to 
be eliminated from the SLI diagnosis process. 
Secondly, a computerised system integrated 
with all the tools required to diagnose SLI 
should be developed to at least semi-automate 
the SLI diagnosis process. The present study 
proposes the use of an innovation-driven 
approach to enhance and semi-automate existing 
SLI diagnosis procedures. To end this, two 
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is mapped to the features of the eye and positions 
on the screen via regularised linear regression 
(5). Another library which can be integrated with 
WebGazer.js to mimic the functionality of an eye 
tracker is heatmap.js.

Figure 1. WebGazer.js in action, as seen in (5)

Figure 2. heatmap.js output, as seen in (6)

The heatmap.js library is self-explanatory. 
Based on input coordinates, heatmap.js is 
capable of creating a canvas and drawing heat 
maps which are virtually the same as eye tracker 
outputs (6). The innovative combined usage of 
WebGazer.js and heatmap.js is anticipated to a 
sufficient replacement for eye trackers and all 
that is required would be a standard computer 
webcam. Apart from the mentioned libraries, 
pupil detection and gaze tracking algorithms in 
themselves are also popular topics of study and 
can be implemented using other libraries such 
as, OpenCV or even MATLAB.

Evaluation Methodologies

WebGazer Accuracy Test

An original study which delineates 
the development and evaluation process 
of WebGazer claims up to 100px in terms 
of accuracy given sufficient lighting (5). In 
the following accuracy test which has been 
conducted, this evaluation is refined by 
testing WebGazer under three specific lighting 
conditions separately to identify the optimal 
lighting setting under which WebGazer, 
when applied for gaze tracking purposes in 
a computerised SLI diagnosis setting, would 
perform best. Figure 3 below shows the three 
different lighting conditions under which the 
WebGazer gaze tracking component was tested, 
via a USB Video Class Video Graphic Array 
(UVC VGA) WebCam at 640×480 resolution.

Figure 3. Lighting conditions (left to right: Dark, face-focused lighting, global lighting) 
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The three different lighting conditions are 
shown in Figure 3: dark, face-focused lighting 
and global lighting. For face-focused lighting, 
white light was emitted from a light source 
placed in front of the webcam in a dark room. In 
terms of accuracy measurement, accuracy was 
primarily derived from the distance function, 
wherein the distance between the predicted gaze 
location and the actual gaze location is calculated 
with respect to the on-screen coordinates. The 
Pythagoras theorem was used to calculate the 
distance between the two points given the x,y 
coordinates of both points.

Distance, D(f) = √((x1-x2)² + (y1-y2)²)

As such, the average distance of each gaze 
tracking session is calculated via this equation. 

( )
u n
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=
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/

given n = total coordinate points predicted by 
WebGazer in a single gaze tracking session. In 
this accuracy test, n is selected to be a constant of 
100 — that is, 100 gaze coordinates are predicted 
in each test session. Given the mean distance, the 
accuracy is derived by the following equation: 

acc u
1000
1000= -

which operates under the assumption that any 
prediction beyond the distance of 1000px is 
of 0 accuracy. The smaller the mean distance 
between the predicted point and the actual point, 
the closer the accuracy is to 1. Given the above 
equation, the documentation of WebGazer claims 
0.9 accuracy under optimal conditions. 

Automated Versus Manual Duration 
Judgement Test

By observing the existing SLI diagnosis 
procedures and the steps involved in order to 
arrive at the diagnosis results, it is clear that 
there are a multitude of ways to diagnose SLI. 
One of the more common methods would be 
to have patients complete a binary-picture 
matching task, wherein the patient is presented 
with a sentence in both its textual and audio 
form and required to pair the sentence to one of 
two pictures which correctly portray the scenario 
depicted by that sentence. A standardised time 
delay for the presentation of the sentence, audio 
and binary picture exists. An audio is provided 
after the sentence is displayed for 5 sec and 
then the pictures for selection are displayed 
after 7 sec. Each set of questionnaires contains 

a fixed number of such tasks, commonly set 
at 40 sec. The first problem corresponding to 
H2-a arises because the binary picture matching 
task above is conducted manually. As such, 
the accuracy of the specific delays set in place 
during the diagnosis session is questionable 
due to potential human error. Another problem 
which also corresponds to H2-a is the time and 
cost incurred on speech language therapists 
who have to carry out diagnosis procedures 
manually. Given the problems described above, 
H2-a anticipates that the automation of SLI 
diagnosis procedures is possible and would 
increase diagnosis accuracy and reduce the cost 
of conducting said diagnosis. Proving H2-a relies 
significantly on conducting a thorough accuracy 
test which compares the time delay accuracy 
of an automated test to that of a manually 
conducted test. In our conducted experiment, 
the automation of an SLI diagnosis questionnaire 
was simulated using JavaScript (JS) structures 
involving the use of setTimeout (is a JS function 
to delay the execution of a script) for delayed 
presentation of a particular element. 

let now = new Date();

setTimeout(() => {

let actualDelay = (new Date()).getTime() - 
now.getTime();

console.log(“Element displayed: “ + 
actualDelay); 

}, elementDelay);

On the other hand, timestamps for delays in 
manual SLI diagnosis are recorded via JS which 
makes use of keydown events. For example, if 
a speech language pathologist thinks the delay 
is over and it is time to present the element on 
the screen, a key on the keyboard is pressed by 
subject and the timestamp for presenting the 
element is captured.

let now = new Date();

window.onkeydown = (event) => {

let actualDelay = (new Date()).getTime() - 
now.getTime();

console.log(“Element displayed: “ + 
actualDelay);

}

In this experiment, the fixed element delay 
was set to 5 sec — that is, elementDelay for the 
first script should be set to 5000 (msec). The 
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experiment was carried out for a total of 10 times 
each set, for five sets. The actual time delays for 
both the automated diagnosis simulation and 
manual diagnosis simulation was recorded. The 
average actual time delay values for each set 
were compared to the perfect time delay values 
and the deviation percentage for each set was 
calculated as follows:

| (actualDelay - elementDelay) | / elementDelay 
× 100%

Singlims_ES.exe Cross-Comparison 
Check 

In order to prove that statistical methods 
used to analyse SLI diagnosis results are 
reproducible and can be programmed into the 
integrated SLI diagnosis computer system, a 
thorough review of the SLI diagnosis process and 
tools utilised by speech-language pathologists 
has revealed that the yes-no binary classification 
of SLI diagnosis results are based on the 
comparison of an individual’s score on a single 
test with the score of a normative or control 
sample, as detailed in (7). Given the calculations 
and mathematical formulae involved in obtaining 
a proper analysis of the SLI diagnosis results, 
an automated yes-no binary classifier can be 
constructed given sufficient controlled data. The 
script below determines the results of attempts to 
implement the statistical method for single-case 
research delineated in (7) via JS with the jStat JS 
library, to obtain the one-tailed test probability 

value of an input test score, which plays a crucial 
role in determining whether the patient has SLI. 
Given sd = standard deviation of control sample, 
u = mean of control sample, N = size of control 
sample and score = score of test case:

function computeResult(sd, u, N, score) {

console.log(“One-tailed probability = “ + jStat.
ttest(((score-u)/(sd*Math.sqrt((N+1)/N))), N, 
1));

}

The function above was used for random 
testing, and has been executed for a variety of 
10 different input values for sd, u, N and score. 
For each execution of the script, a similar set of 
inputs were fed to the Singlims_ES.exe computer 
programme which accompanies (7). 

Results

Tables 1–3 show the results WebGazer 
accuracy test under the three lighting conditions, 
respectively, for 30 times each. To simplify the 
results, the average accuracy for tests conducted 
under the three lighting conditions were 
calculated and tabulated as shown in Table 4. 
The results of automated versus manual duration 
judgement test is tabulated and shown in  
Table 5. Singlims_ES.exe cross-comparison 
check is shown in Table 6.

Table 1. WebGazer gaze tracking accuracy evaluation results (low lighting)

ID Type Distance (px) Accuracy (%)

1-L Low lighting 390.83 60.9

2-L Low lighting 406.39 59.4

3-L Low lighting 402.68 59.7

4-L Low lighting 379.2 62.07

5-L Low lighting 360.32 64

6-L Low lighting 358.93 64.1

7-L Low lighting 385.46 61.45

8-L Low lighting 407.84 59.21

9-L Low lighting 445.08 55.49

10-L Low lighting 271.84 72.81

11-L Low lighting 387.17 61.28

12-L Low lighting 365.73 63.42

13-L Low lighting 355.594 64.44
(continued on next page)
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ID Type Distance (px) Accuracy (%)

14-L Low lighting 429.22 57.07

15-L Low lighting 393.38 60.66

16-L Low lighting 413.473 58.65

17-L Low lighting 445.38 55.4

18-L Low lighting 332.74 66.72

19-L Low lighting 394.36 60.56

20-L Low lighting 421.17 57.8

21-L Low lighting 313.94 68.6

22-L Low lighting 407.65 59.23

23-L Low lighting 353.064 64.693

24-L Low lighting 401.97 59.8

25-L Low lighting 363.14 63.68

26-L Low lighting 432.768 56.72

27-L Low lighting 411.49 58.85

28-L Low lighting 444.75 55.5

29-L Low lighting 356.05 64.3

30-L Low lighting 351.3 64.869

Table 2. WebGazer gaze tracking accuracy evaluation results (face-focused lighting)

ID Type Distance (px) Accuracy (%)

1-FF Face-focused lighting 456.362 54.3

2-FF Face-focused lighting 452.91 54.7

3-FF Face-focused lighting 454.25 54.57

4-FF Face-focused lighting 510.69 48.93

5-FF Face-focused lighting 372.26 62.7

6-FF Face-focused lighting 497.01 50.29

7-FF Face-focused lighting 579.8 42

8-FF Face-focused lighting 515.37 48.46

9-FF Face-focused lighting 612.29 38.7

10-FF Face-focused lighting 443.78 55.62

11-FF Face-focused lighting 346.58 65.34

12-FF Face-focused lighting 489.36 51.06

13-FF Face-focused lighting 499.36 50

14-FF Face-focused lighting 491.8 50.8

15-FF Face-focused lighting 482.21 51.7

16-FF Face-focused lighting 406.06 59.3

17-FF Face-focused lighting 517.44 48.25

18-FF Face-focused lighting 572.14 42.7

19-FF Face-focused lighting 457.71 54.22

20-FF Face-focused lighting 474.94 52.5

Table 1. (continued)

(continued on next page)
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ID Type Distance (px) Accuracy (%)

21-FF Face-focused lighting 475.72 52.42

22-FF Face-focused lighting 462.08 53.7

23-FF Face-focused lighting 452.25 54.77

24-FF Face-focused lighting 580.539 41.94

25-FF Face-focused lighting 403.18 59.6

26-FF Face-focused lighting 366.18 63.3

27-FF Face-focused lighting 492.57 50.7

28-FF Face-focused lighting 448.32 55.1

29-FF Face-focused lighting 310.95 68.9

30-FF Face-focused lighting 555.79 44.42

Table 3. WebGazer gaze tracking accuracy evaluation results (global lighting)

ID Type Distance (px) Accuracy (%)

1-G Global lighting 96.105 90.3

2-G Global lighting 118.58 88.14

3-G Global lighting 103.58 89.6

4-G Global lighting 98.95 90.1

5-G Global lighting 120.099 87.9

6-G Global lighting 131.469 86.85

7-G Global lighting 117.885 88.2

8-G Global lighting 124.2 87.5

9-G Global lighting 67.83 93.21

10-G Global lighting 120.06 87.9

11-G Global lighting 95.986 90.4

12-G Global lighting 98.726 90.12

13-G Global lighting 90.729 90.92

14-G Global lighting 94.73 90.5

15-G Global lighting 121.7 87.8

16-G Global lighting 94.79 90.52

17-G Global lighting 125.78 87.4

18-G Global lighting 133.56 86.6

19-G Global lighting 100.87 89.9

20-G Global lighting 113.76 88.62

21-G Global lighting 123.14 87.68

22-G Global lighting 115.93 88.4

23-G Global lighting 139.67 86.03

24-G Global lighting 113.67 88.63

25-G Global lighting 114.51 88.5

26-G Global lighting 106.96 89.303

27-G Global lighting 99.522 90.04

Table 2. (continued)

(continued on next page)
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ID Type Distance (px) Accuracy (%)

28-G Global lighting 132.40 86.7

29-G Global lighting 112.96 88.7

30-G Global lighting 138.17 86.18

Table 4. T1 average accuracy

Type Average accuracy (%)

Low lighting 61.379

Face-focused lighting 52.7

Global lighting 88.755

Table 5. Accuracy test results for automated and manual diagnosis time delay 

ID Type Average actual delay (msec) Deviation percentage (%)

1-A Automated 5002 0.04

2-A Automated 5001 0.02

3-A Automated 5001.6 0.032

4-A Automated 5000.4 0.008

5-A Automated 5000 0

1-M Manual 4967 0.66

2-M Manual 5168.5 3.37

3-M Manual 4858.2 2.836

4-M Manual 5041.4 0.828

5-M Manual 5039.7 0.794

Table 6. Singlims_ES.exe cross-comparison check results

Input parameters Results (one-tailed probability)

ID Mean SD Sample size Score Singlims_ES Test script Difference

1 92.94 5.77 9 90 0.32089 0.32066 0.00023

2 93.94 5.35 8 91 0.31018 0.31022 0.00004

3 92.65 5.44 10 88 0.21805 0.21790 0.00015

4 60.91 5.12 10 80 0.00255 0.00256 0.00001

5 73.16 14.88 19 80 0.32974 0.32972 0.00002

6 76.06 11.79 33 79 0.40375 0.40376 0.00001

7 74.09 14.03 22 50 0.05396 0.05394 0.00002

8 74.75 7.41 79 70 0.26299 0.26325 0.00026

9 71.72 10.68 90 50 0.02306 0.02300 0.00006

10 74.14 8.27 81 50 0.00240 0.00240 0

Table 3. (continued)
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Discussion

The results of test 1 present some expected 
outcome, but also subvert quite a number 
of hypotheses which have been put forward 
prior to the accuracy test. One of the expected 
outcomes included gaze tracking under low 
lighting conditions (average accuracy: 61.379%) 
performing with worse accuracy as compared 
to global lighting (average accuracy: 88.755%). 
However, it was also found that WebGazer 
performed worst under face-focused lighting 
conditions (average accuracy: 52.7%). It is 
also worth noting that under face-focused 
lighting conditions, the clmtrackr component 
in WebGazer which is responsible for tracking 
face landmarks performed poorly and took a 
long time to recognise a face within webcam 
footage. This could be due to the contrasting 
lighting conditions between facial features 
and backgrounds feature due to the focused 
light on the face. Overall, it is safe to affirm the 
claim that the gaze tracking accuracy offered 
by WebGazer can reach 0.9 accuracy, which 
is within the 100px error rate. As such, it can 
be concluded that H1-a, given global lighting 
conditions, is demonstrated. By extension, the 
elimination of eye tracking hardware for SLI 
diagnosis reinforces the truthiness of H1. While it 
is worth noting that this study does not present 
any software replacement for other hardware 
which may be used during more advanced SLI 
diagnosis tests, such as EEG biosensors, the 
feasibility of replacing eye tracking hardware 
with conventional webcams doubtlessly would 
cut diagnosis cost and foster wider availability of 
SLI diagnosis.

The belief that computerised systems 
can be built to diagnose SLI, as introduced 
in H2, is far from unorthodox. In fact, many 
computerised tools have been developed in 
order to aid in data collection, visualisation 
and statistical calculation of diagnostical data. 
However, the key term of H2 is ‘integrated’, 
in the sense that speech language pathologists 
do not need multiple tools or systems to come 
to the conclusion of whether or not a patient 
has SLI but rather a single expert system to 
provide a definite answer given a predefined set 
of parameters. One of the components that can 
clearly be integrated is gaze locations captured 
via eye tracking devices during SLI diagnosis, 
as related to H1. In that case, machine learning 
techniques such as neural networks can be 
used to build binary classifiers to mimic expert 

decision making. For H2, however, the focus is 
placed solely on the existing difficulties faced 
by speech language therapists with respect to 
the lack of both automation and the integration 
of either software-related or non-computerised 
diagnosis tools. From the results of test 2, it 
is clear that automation via computers being 
introduced into the conventional SLI diagnosis 
procedures increases diagnosis accuracy in terms 
of the duration of judgement. For humans, the 
accuracy of time estimation largely depends on 
the length of the duration to be evaluated. For 
computer programmes and systems, aspects 
which introduce similar variables affecting 
timing accuracy do exist, such as CPU throttling, 
but the internal timers of most computer systems 
have a granularity of 16.666 msec (60Hz), which 
is a fraction of the deviation from actual time 
exhibited in human time estimation. We do not 
deny that such deviations occurring in manual 
SLI diagnosis procedures do not substantially 
affect diagnosis accuracy, but the results that 
we have obtained shows that there is margin 
for improvement, however small. From this 
experiment, we draw the conclusion for H2-a 
that the automation of the binary picture 
matching task for SLI diagnosis is possible, 
as shown in the JS script explained in the 
experiment details above. We also conclude that 
automation can introduce improvements to SLI 
diagnosis procedures not only in terms of cost, 
but also by positively impacting accuracy.

As for test 3, the one-tailed test probability 
values produced by both the JS script above and 
Singlims_ES were observed to be similar up to 
3 decimal places. The script provided above can 
hence be safely integrated into whatever system 
or tool which shall be built according to the 
innovative approach described in this paper. We 
conclude that H2-b is true and by extension that 
H2 has been proven.

Conclusion

Innovative techniques and approaches 
have frequently been proposed and prioritised 
within the medical world. The development of a 
tool or system based on the innovative approach 
proposed in the present study can prevent 
SLI from remaining the ‘hidden disorder’ by 
decreasing its difficulty of being diagnosed by 
speech-language pathologists. Based on the 
results of this paper, we propose that a similar 
integrated computer expert system can be built 
to help speech language pathologists diagnose 
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and provide treatment to patients suffering from 
SLI. 
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