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Abstract
Background: Malaria is one of the leading causes of death worldwide caused by parasites 

of the genus Plasmodium. The reduced efficacy of the mainstay antimalarial drugs due to the 
widespread of drug-resistant Plasmodium falciparum (P. falciparum) necessitates an effort to 
develop novel antimalarial drugs with new targets. The effects of a phenolic compound, ellagic 
acid, against the malaria parasite have previously been reported. This present study aimed to 
evaluate the effect of ellagic acid on pH of the P. falciparum digestive vacuole. 

Methods: The antimalarial potential of ellagic acid against the chloroquine-sensitive strain 
(3D7) of P. falciparum was assessed by using a malarial SYBR Green 1 fluorescence-based (MSF) 
assay. The effect of different concentrations of ellagic acid on the pH of the parasite’s digestive 
vacuole at mid-trophozoite stage was examined by using a ratiometric pH indicator, fluorescein 
isothiocyanate (FITC)-dextran on the flow cytometry.

Results: The result of the MSF assay showed that ellagic acid has an antimalarial activity 
(half-maximal inhibitory concentration [IC50] = 1.85 ± 4.57 nM) at par with a standard drug, 
artemisinin (IC50 = 1.91 ± 5.41 nM). The pH of the digestive vacuole of ellagic acid-treated parasites 
was significantly changed (pH values ranged from 6.11 to 6.74) in a concentration-dependent 
manner as compared to untreated parasites (P < 0.001). A similar effect was shown by the 
parasites treated with a standard proton pump inhibitor, concanamycin A.

Conclusion: These findings suggest that ellagic acid might have altered the digestive 
vacuole pH through the inhibition of proton pumps that regulate the acidification of this organelle. 
Overall, this study provides a valuable insight into the potential of ellagic acid as a promising 
antimalarial candidate with a novel mechanism of action. 
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Introduction

Malaria is a mosquito-borne disease that 
imposes significant health and socioeconomic 
impacts on humans. This disease contributes 
to the high rate of global infectious disease-
related morbidity and mortality with 409,000 
deaths from 229 million cases reported in 2019 
(1). Out of the five Plasmodium species causing 
human malaria, Plasmodium falciparum  

(P. falciparum) is the most virulent and 
responsible for the highest disease burden, 
accounting for over 90% of the malaria deaths 
worldwide (1). Although a decline in the 
incidence of malaria results from the removal 
of mosquito breeding sites with insecticides, 
the use of long-lasting insecticide-treated nets 
and indoor residual spraying (2), an effective 
administration of antimalarial drugs can 
significantly reduce the overall malaria-related 
morbidity and mortality (3). The emergence of 
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Methods

The Malaria Parasite in vitro Culture

P. falciparum (3D7 strain) was maintained 
in RPMI 1640 medium (Gibco, USA) and type O+ 
human erythrocytes at 2% haematocrit by using 
an established protocol (39). Ring stage parasites 
(5% parasitemia) were synchronised by using 
5% D-sorbitol (Sigma-Aldrich, USA) (29) as 
employed in the subsequent assay after 2 h post-
synchronisation.

The Malarial SYBR Green 1 Fluorescence-
Based Assay

The antimalarial activity of ellagic acid was 
determined by using the malarial SYBR Green 1 
fluorescence-based (MSF) assay (40). The stock 
solution of ellagic acid (11 mM) (Sigma-Aldrich, 
USA) was diluted in RPMI 1640 medium at 
10 concentrations of two-fold serial dilutions 
into 96-well microtiter plates. Artemisinin 
(Sigma-Aldrich, USA) was used as a standard 
drug, whereas infected erythrocytes without 
drug treatment served as a negative control. 
Aliquots (20 µL) of different concentrations 
of the compounds were transferred into 
other plates and added with suspensions 
(180 µL) of synchronised ring stage parasites 
(2% parasitemia, 2% haematocrit). After 
incubation for 48 h at 37 °C in a 5% CO2, the cell 
suspensions in the plates were stained with 20× 
SYBR Green 1 solution (20 µL) (Sigma-Aldrich, 
USA) for 1 h at room temperature (41). The 
total fluorescence signal was measured with a 
microplate reader at the excitation and emission 
wavelengths of 490 nm and 530 nm, respectively 
and used to calculate the parasite inhibition (%) 
of each concentration. Half-maximal inhibitory 
concentration (IC50) values of the drugs were 
determined by probit regression analysis with 
GraphPad Prism software version 8.

The FITC-Dextran Encapsulation into 
Erythrocytes

Packed erythrocytes were lysed in 2.25 
volumes of ice-cold haemolysis buffer (5 mM 
sodium phosphate, pH 7.5) supplemented with 
Mg-ATP (1 mM) in the presence of fluorescein 
isothiocyanate (FITC)-dextran (25 µM) (Sigma-
Aldrich, USA; 10 kDa) (27). After incubation 
for 10 min to allow the encapsulation of the 

resistance to artemisinin-based combination 
therapies (ACTs) as the current frontline 
treatments has, however, threatened the malaria 
control efforts (4). Given this drawback and 
the absence of protective malaria vaccines, the 
discovery of new antimalarial agents particularly 
with novel mechanisms of action is urgently 
needed.

Medicinal plants constantly become 
the source of antimalarial drug candidates. 
They are rich in phytochemicals such as 
alkaloids, terpenes, flavanones and phenolics 
that are highly efficacious in the treatment 
of malaria (5–7). Active metabolites, quinine 
and artemisinin, which are one of the most 
successful antimalarial drugs, are derived from 
these classes of compounds (8). Ellagic acid 
(3,3’,4,4’-tetrahydroxydiphenic acid dilactone) is 
a naturally occurring phenolic compound found 
in certain oak species (9), pomegranate (10), 
longan (11) and lychee (12). This compound has 
been reported to have a number of biological 
activities such as anticarcinogenic (13), anti-
inflammatory (14) and antimalarial properties 
(15–17). The abundance of pyrogallol (18–20) 
and ellagic acid (21–23) in Quercus infectoria, 
an oak species, might contribute to the activity 
against the malaria parasite (24–25). Ellagic 
acid has been postulated to have the antimalarial 
effect through impairment of the haemoglobin 
degradation and β-haematin formation in the 
parasite’s digestive vacuole (15–16, 26). 

The digestive vacuole is the site of action 
of several existing antimalarial drugs (27–
29). Physiologically, the digestive vacuole 
of P. falciparum comprises proteases such 
as plasmepsins and falcipains that function 
optimally at low pH values, ranging from 4.0 to 
5.5 (30–32), which are similar to the pH values 
3.7–6.5 of the digestive vacuole (33–34). The 
digestive vacuole needs to maintain its acidic 
pH condition to facilitate efficient haemoglobin 
degradation and heme detoxification (35). 
Furthermore, the acidification of the digestive 
vacuole is tightly regulated by proton pumps, 
the vacuolar H+-ATPase (V-type H+-ATPase) and 
pyrophosphatase (V-type H+-pyrophosphatase) 
(36–38). Hence, the in vitro antimalarial effect 
of ellagic acid against P. falciparum through 
the alteration of the digestive vacuole pH was 
investigated in this study.
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permeabilise the erythrocyte plasma membrane 
(EPM) and the parasitophorous vacuolar 
membrane (PVM), releasing FITC-dextran in 
the erythrocyte cytoplasm and allowing only 
FITC-dextran entrapped in the digestive vacuole 
for the digestive vacuole pH measurement (28, 
36). Saponin-permeabilised parasites were 
washed twice in extracellular saline medium 
before measuring the FITC-dextran fluorescence 
intensity by using flow cytometry. Changes in 
pH of the digestive vacuole were measured by 
interpolating Rgy in the pH calibration curve of 
FITC-dextran.

Statistical Analysis

All experiments were conducted in 
triplicates (n = 3) on three independent 
occasions and analysed with GraphPad Prism 
software version 8. Mean values were expressed 
as mean (standard deviation [SD]). The data 
were tested for normality before proceeding 
to one-way analysis of variance (ANOVA), 
followed by Dunnett multiple comparisons at 
95% confidence intervals (comparison between 
treated groups and control groups) using the 
IBM SPSS Statistics version 20. A P-value less 
than 0.05 was considered statistically significant.

Results

The MSF assay shows that ellagic acid 
exhibited an antimalarial activity (IC50 = 1.85 
± 4.57 nM) against the 3D7 parasite at par with 
artemisinin (IC50 = 1.91 ± 5.41 nM). The mid-
trophozoite stage parasite-infected erythrocytes 
were then treated with three different 
concentrations of ellagic acid (0.93 nM, 1.85 
nM and 3.70 nM) selected based on the IC50 
value previously obtained. Furthermore, the pH 
change of the digestive vacuole of the parasites 
treated with ellagic acid for 4 h was observed and 
compared to the untreated parasites. As shown 
in Figure 1, the Rgy in the pH calibration curve 
of FITC-dextran provides a measure of digestive 
vacuole’s pH. The Rgy value increased (ranged 
from ~0.6–1.9) with increasing pH (4.0–9.0) 
with pKa of ~5.8 (the inflection point in the 
curve), indicating that FITC-dextran is sensitive 
to pH. 

probe into the cells, the isotonic condition of 
the erythrocytes was restored by using resealing 
buffer A before incubation with resealing  
buffer B for 20 min at 37 °C. Cell suspensions 
were washed twice with resealing buffer B and 
once with RPMI 1640 medium. Erythrocytes 
resealed with FITC-dextran in RPMI 1640 
medium were used in the subsequent assay.

The Digestive Vacuole pH Measurement

The pH calibration curve of FITC-dextran 
was generated to measure pH of the digestive 
vacuole (28, 42). Resealed erythrocytes 
containing FITC-dextran (2% haematocrit) 
were suspended in different buffers (20 
mM) (MES, pH 4.0, 5.5 and 6.0; NaH2PO4, 
pH 6.5, 7.0, 7.5 and 8.0; TRIS, pH 9.0) 
supplemented with 150 mM NaCl and in the 
presence of 10 µM ionophore, carbonyl cyanide 
m-chlorophenylhydrazone (CCCP; Sigma-
Aldrich, USA). FITC-dextran was excited by 
using a 488 nm argon ion laser of FACSCantoTM 
II flow cytometer (Becton Dickinson) and its 
fluorescence intensity was collected at FITC/
green (530 nm) and phycoerythrin (PE)/yellow 
(585 nm) channels. The data were analysed 
using FCS Express 5 flow cytometry software (De 
Novo Software). The cell population was gated 
based on their side scatter (SSC) and forward 
scatter (FSC) profiles and an additional gate was 
established based on the fluorescence intensity 
of FITC-dextran at green and yellow. The peak 
of the fluorescence intensity (Rgy) for both green 
and yellow channels was obtained from the 
histograms from which the ratio of green/yellow 
Rgy was measured and plotted as a function of the 
pH.

Synchronised mid-trophozoite stage 
parasites (~34-h post-invasion) grown in 
resealed erythrocytes containing FITC-dextran 
(5% parasitemia, 2% haematocrit) were treated 
with ellagic acid at different concentrations based 
on the IC50 value obtained: 0.93 nM (0.5 × IC50), 
1.85 nM (1.0 × IC50) and 3.70 nM (2.0 × IC50). A 
standard proton pump inhibitor, concanamycin 
A (75 nM) (Sigma-Aldrich, USA) was used as 
a positive control and untreated parasites as a 
negative control. After 4-h incubation, infected 
erythrocytes were selectively permeabilised 
with 0.035% saponin (Sigma-Aldrich, USA) to 
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Figure 1. A standard pH calibration curve of FITC-dextran. A FITC-dextran pH calibration curve was 
constructed by suspending resealed erythrocytes in buffers of different pH (4.0–9.0) in the presence 
of an ionophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). The fluorescence intensity 
was collected at green and yellow channels by flow cytometry. The ratio of green/yellow fluorescence 
intensity (Rgy) was plotted on the y-axis against the pH on the x-axis. The dose-response curve was 
fitted by non-linear regression with GraphPad Prism (R2 = 0.9982). The data are expressed as mean 
(SD) derived from three independent experiments done in triplicate

Figure 2.  Analysis of the pH of the digestive vacuole of P. falciparum after treatment with different 
concentrations of ellagic acid. (A) Representative scatter and fluorescence intensity profiles of the 
saponin-permeabilised parasite population at FITC/green and PE/yellow channels. (B) The effect of 
ellagic acid on pH of the digestive vacuole was investigated by using three different concentrations:  
0.5 × IC50 (0.93 nM), 1.0 × IC50 (1.85 nM) and 2.0 × IC50 (3.7 nM). The untreated mid trophozoite stage 
parasite was used as a negative control, while concanamycin A (CA; final concentration of 75 nM) was 
used as a positive control. The ratio (Rgy) was calculated for each treatment and converted to a pH value 
by means of the generated standard calibration curve in Figure 1. 

Note: ***P < 0.001 was considered as statistically significant
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transportation of H+ into the digestive vacuole 
and out of the parasite across the parasite plasma 
membrane (51–52). Therefore, the inhibition of 
the proton pumps that causes the pH alteration 
of the digestive vacuole might become a possible 
mechanism of ellagic acid action.

Ellagic acid activity has also been linked 
to the inhibition of plasmepsin II responsible 
for the digestion of haemoglobin and the 
impairment of β-haematin formation in the 
digestive vacuole (15–16, 26). The process of 
β-haematin formation could be inhibited by 
acting on heme monomers to coordinate their 
oxidation. Some phenolic compounds have 
exhibited the inhibitory effect on the heme 
polymerisation and β-haematin/hemozoin 
formation occurred particularly within the 
digestive vacuole. There is a possibility that 
ellagic acid might also have an effect on proton 
pumps located on the digestive vacuole’s 
membrane, which results in the alteration of the 
acidic pH of this organelle. Hydroxychloroquine, 
a standard antimalarial drug has been shown to 
accumulate in the digestive vacuole along a pH 
gradient and inhibit the degradation of cargo 
derived from endocytosis or autophagy pathway. 
This process is executed by increasing the 
digestive vacuole pH, thus preventing the activity 
of the digestive vacuole enzymes (53).

The acidification of the parasite digestive 
vacuole is vital for the occurrence of various 
biological processes. It has been suggested 
that changes in the acidic environment might 
interfere with haemoglobin degradation and 
subsequently heme detoxification (48). This 
will inhibit the growth and proliferation of the 
parasite. Several studies described that the subtle 
pH changes in other acidic organelles, such as 
the lysosome caused the significant decrease in 
lysosomal enzyme activities, thus causing various 
pathological alterations (54–56). The increase 
of only a few tenths of a pH unit might have a 
major impact on the lysosomal function, whereas 
the organelle needs to maintain its acidic pH 
condition as in the digestive vacuole for the 
optimal activity of proteases (57). As the V-type 
H+-ATPase is localised within a membrane-
enclosed organelle, ellagic acid might probably 
disrupt the pumping function and therefore alter 
the digestive vacuole pH, which was evidenced 
in this study. The important role that the V-type 
H+-ATPase plays in regulating the physiological 
pH of the digestive vacuole enables a primary 
explanation for the antimalarial potential 
of ellagic acid. Therefore, the postulated 

Prior to digestive vacuole pH measurement, 
the parasites were isolated with saponin to 
permeabilise the EPM and PVM, allowing only 
the digestive vacuole-located fluorescence 
intensity to be measured by the flow cytometer. 
Based on the established gating of saponin-
permeabilised parasites (Figure 2A, left panel), 
the digestive vacuole pH values treated with 
0.93 nM, 1.85 nM and 3.70 nM of ellagic acid 
resulted in 0.59, 0.91 and 1.22 pH unit higher, 
respectively than that of the untreated parasites 
(pH = 5.52 ± 0.38) (P < 0.001) (Figure 2B). The 
transition of the digestive vacuole pH from acidic 
to alkaline (pH = 7.35 ± 0.25) was also observed 
in the population of viable parasites treated with 
a standard proton inhibitor, concanamycin A. 

Discussion

Ellagic acid has been shown to possess 
a number of biological and pharmacological 
activities (43–46). The compound exhibited a 
promising antimalarial activity in vitro, which 
is in agreement with a report by Garcia-Alvarez 
et al. (17) that ellagic acid was active against a 
wide range of P. falciparum strains with IC50 

values in the nanomolar range. Notably, ellagic 
acid also has an in vivo antimalarial activity 
against P. vinckei petteri (17), P. berghei (47) 
and P. yoelli (15). The compound was found to 
be more active at mature stage parasites when 
most of the hemoglobin-rich host cell cytoplasm 
was ingested and digested (15). Artemisinin, the 
standard antimalarial drug showed an IC50 of 1.91 
± 5.41 nM that is consistent our previous studies 
(48–50), confirming the validity of the assay.

Only a few studies of the effect of ellagic 
acid on the malaria parasite’s digestive vacuole 
are evident in the literature. Thus, the effect 
of ellagic acid with an emphasis on pH on 
the digestive vacuole was investigated to 
determine its possible mechanism of action. 
The present study reported an increase of the 
digestive vacuole pH following treatment with 
ellagic acid. Meanwhile, the digestive vacuole 
pH of untreated parasites was acidic, which 
is consistent with other studies using the 
same probe (27–28, 34). The treatment of the 
parasites with a V-type H+-ATPase inhibitor, 
concanamycin A, resulted in the alkalinisation 
of the digestive vacuole. This suggests that the 
digestive vacuole proton pumps might be active 
in situ. This is in agreement with previous 
studies showing the capability of concanamycin 
A to disrupt pH regulation by preventing the 
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mechanism of action of ellagic acid, which 
caused the pH alteration in the digestive vacuole 
is via the inhibition of the V-type H+-ATPase. 

Conclusion

In summary, this in vitro study unveiled 
the promising antimalarial activity of ellagic acid 
against P. falciparum and the compound was 
shown at par with artemisinin. It is suggested 
that ellagic acid increased the digestive vacuole 
pH of the treated parasites probably by serving 
as an inhibitor of the proton pumps localised 
on the membrane of the digestive vacuole. 
A similar digestive vacuole pH alteration 
was shown by concanamycin A. This can be 
confirmed by performing isobologram analysis 
involving the interaction between ellagic acid 
and concanamycin A, the specific V-type H+-
ATPase inhibitor or NaF, the specific V-type H+-
pyrophosphatase inhibitor to confirm the target 
of ellagic acid.
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