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Abstract
The Identifying the dynamic metabolome of the individual in response to a particular 

stimulus using a metabolomic approach is an emerging research area. Measuring the postprandial 
metabolite response utilising a meal-challenge test (MCT) provides information beyond the 
fasting state, which is especially important since human beings spend most of their time in the 
postprandial state. This is pertinent as an excessive rise in postprandial glycaemia is common in 
individuals with type 2 diabetes mellitus (T2DM), which puts them at a high risk of developing 
cardiovascular disease (CVD). While a low glycaemic index (GI) meal improves postprandial 
glycaemia and insulin levels in MCT studies among individuals with T2DM, its effect on metabolite 
changes in the postprandial state is unclear. This review summarises the perturbation in 
postprandial metabolites following a low GI meal in comparison to that following a usual or 
high GI meal and maps the metabolites in their metabolic pathways. We undertook a literature 
review using electronic databases, with the Medical Subject Headings (MeSH) terms, to retrieve 
relevant studies based on specific criteria. A total of seven related studies were documented. 
For the majority of metabolites studied, it was identified that metabolic regulation following an 
MCT extends beyond the glucose pathway. Altered metabolic pathways after the consumption 
of a low GI meal include: i) essential amino acid metabolism by altering the levels of plasma 
phenylalanine, tyrosine, lysine, leucine, isoleucine and valine; ii) glycolysis and tricarboxylic acid 
(TCA) metabolism by altering citrate and alanine, and iii) gut microbiota metabolism by altering 
betaine and acetate. The altered metabolites regulated the pancreatic insulin secretion and related 
to other dietary factors beyond GI modifications. These metabolomics data need to be interpreted 
cautiously because the metabolic changes analysed might not be due to the beneficial effects of a 
low GI meal. Validation of the putative metabolomic biomarkers following a dietary intervention 
MCT is suggested because researchers need to fully understand the kinetics and metabolism of 
individuals metabolite before reaching a solid conclusion. Further research characterising the 
metabotype based on habitual dietary patterns is warranted. 
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Low glycaemic index (GI) meals are 
commonly recommended to patients with T2DM 
to improve postprandial glycaemic and insulin 
responses (14, 15). GI ranks carbohydrates on 
a scale from 0 to 100 based on their effect to 
blood glucose after eating (16). For practical 
purposes, the GI concept can be categorised 
as low GI: ≤ 55, intermediate GI: 56–69 and 
high GI: ≥ 70. Foods with a high GI are rapidly 
digested, absorbed and metabolised, causing 
marked fluctuations in glycaemic levels, 
whereas foods with low GI produce a smaller 
fluctuation in glycaemic levels. Consuming an 
appropriate amount and selecting the right 
type of carbohydrate is beneficial in managing 
the postprandial glycaemic response in T2DM 
patients (17–20). Nonetheless, the effect of GI on 
metabolite changes in the postprandial state in 
individuals with T2DM is unclear.

Previous reviews on the metabolomics 
approach have focused on discovering dietary 
biomarkers in foods such as meat, fish, 
vegetables, citrus fruits, coffee and tea (6, 21, 
22) with limited studies focusing on the meal 
GI. While reviews on metabolite markers among 
T2DM patients compared to those in their 
healthy counterparts have been documented, 
studies on the differences in metabolite markers 
after an MCT in the postprandial state are scanty 
(23–27). Thus, this review aimed to summarise 
the perturbation in postprandial metabolites 
following a low GI meal compared to those 
following a usual or high GI meal and map the 
metabolites into the corresponding metabolic 
pathways.

Methods

A literature review was undertaken using 
electronic databases to retrieve relevant studies 
based on specific criteria. We utilised the 
Medical Subject Headings (MeSH) terms of 
‘metabolomic’ AND ‘postprandial’ AND ‘NMR’. 
We restricted our search to studies related only 
to humans, published in English in the last  
10 years. Studies that were included for review 
had the following study designs: randomised 
crossover or parallel clinical trials that applied 
a metabolomics approach to low GI MCT. 
Studies were excluded if they did not fulfil the 
selection criteria, were not applicable to research 
questions or were duplicate publications. 

Introduction

Metabolomics is a tool used to profile and 
quantify all low molecular-weight metabolites 
that are present in biological samples. This 
technique is instrumental in exploring the 
differences in the effects of particular stimuli on 
metabolic pathways in an organism. Different 
analytical platforms are utilised to unravel and 
quantify metabolite contents and then this 
information is combined with multivariate 
analysis tools, such as principal component 
analysis, for data interpretation and mining (1).

In recent years, interest has increased 
regarding applications of a metabolomics 
approach in nutrition research, examining 
metabolites following a meal-challenge test 
(MCT) (2). This approach is pertinent as most of 
the imbalances in diet-dependent metabolisms, 
such as inflammation and oxidation, are not 
detectable in the fasting state. The postprandial 
response of metabolites reflects the activation 
of endogenous metabolic pathways sensitive to 
food intake or absorbed macronutrients present 
in meals following consumption (3–6). Although 
extensive data in metabolites are available, 
the mapping and interpretation of observed 
differences in metabolites to the corresponding 
metabolic pathway remain challenging and 
warrant further validation. Furthermore, 
significant interindividual variations may be 
observed in response to an MCT due to the 
differences in gene polymorphisms, epigenetic 
patterns and gut microbiota compositions (7).

An excessive rise in postprandial 
glycaemia, defined as a 2-h post-meal glucose 
level of  > 7.8 mmol/L (8), is a common 
feature of type 2 diabetes mellitus (T2DM) 
(9, 10). It has previously been observed that 
postprandial hyperglycaemia is more prevalent 
in Asians than Caucasians due to higher insulin 
resistance. In southeast Asia, the highest level 
of postprandial glycaemia was reported in 
Malaysia at 11 mmol/L (11). Furthermore, 40% 
of 1,077 Malaysian patients with T2DM had 
postprandial hyperglycaemia (12). Persistent 
and excessive elevations in the glycaemic level 
deserve necessary attention from healthcare 
professionals as such elevations lead to the 
development of atherosclerosis, thereby 
increasing the risk of cardiovascular disease 
(CVD) (13). 
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Results

The flowchart of literature selection is 
presented in Figure 1. A total of seven related 
MCT studies were documented and summarised 
in Table 1. All studies were conducted among 
healthy individuals. The mean age was 
comparable within the retrieved studies except 
in this study (28), where they recruited post-
menopausal women aged 61 (SD = 4.8) years 
old. Then, the mean body mass index (BMI) 
of individuals ranged from normal to slightly 
overweight. The majority of the studies had 
a randomised crossover design and utilised 
the nuclear magnetic resonance (NMR)-based 
metabolomics approach. There were five 
studies analysed the plasma samples while the 
remaining analysed the urine samples. When 
blood or urine samples were collected for 
metabolomics analysis, the time points ranged 
from 1 h to 8 h. 

Since the purpose of this paper was to 
review recent research regarding low GI MCTs, 

we examined several studies that measured 
dietary GI. To the best of our knowledge, no 
MCT studies specifically investigated the effect 
of differing meal GI or GI values of food on the 
postprandial metabolomics profile. Therefore, 
we combined the studies that examined the 
effect of low GI food from different food groups 
such as rye (3, 28–31), wheat bran (32) and 
β-glucan fibre from barley (33). Then, we derived 
the GI values of the food items based on the 
International Table (34) and updated database 
on the GI website (Sydney University of Glycemic 
Index Research Services). There are three 
pathways and metabolites that are consistently 
reported to respond to low a GI meal: i) essential 
amino acid metabolism by altering the levels 
of plasma phenylalanine, tyrosine, lysine, 
leucine, isoleucine and valine; ii) glycolysis and 
tricarboxylic acid (TCA) metabolism by altering 
citrate and alanine; and iii) gut microbiota 
metabolism by altering betaine and acetate.

ScienceDirect
(n = 58)

Citations screened after the removal of duplicates
(n = 27)

PubMed
(n = 12)

Full text publications reviewed for potential inclusion
(n = 6)

Additional references identified by a manual search of the 
reference lists of the retrieved articles

(n = 1)

Total number of articles included
(n = 7)

References excluded for:
•	 No description of methods
•	 Content redundancy

Figure 1. Flowchart of literature search
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Discussion

This review paper seeks to summarise the 
available information regarding metabolomic 
biomarkers that can modulate the effects of low 
GI dietary intake concerning insulin resistance 
and T2DM. An attempt was made to map the 
metabolites perturbed following a low GI MCT 
onto the appropriate metabolic pathway, as 
shown in Figure 2. Surprisingly, the majority of 
the metabolites identified infer that metabolic 
regulation following an MCT extends beyond the 
glucose pathway. 

First of all, postprandial differences in 
plasma metabolites related to essential amino 
acids metabolism such as phenylalanine, 
methionine, tyrosine, glutamic acid and 
lysine were identified after rye bread intake 
(3, 29, 30) and rye porridge (31). Branched-
chain amino acids (BCAA) such as leucine, 
isoleucine and valine, and leucine catabolic 
intermediate (2-oxo-isocaproate) were also 
altered following a low GI MCT (28, 30, 31). 
These amino acids played a pivotal role in beta-
cell function (5, 35) correlated with insulin 
resistance (36, 37) and have been independently 
associated with an increased risk of T2DM (23, 
24, 35, 38). Moreover, a study by Würtz  et al. 
(26) to determine the circulating metabolite 
predictors of glycaemia in middle-aged men and 
women concluded that alanine, phenylalanine 
and tyrosine are predictors of fasting and 
postprandial glucose levels at a follow-up of  
6.5 years. 

Consistently higher postprandial plasma 
phenylalanine and valine levels, lower isoleucine 
levels were observed after the consumption 
of low GI MCT (3, 28, 30, 40). More elevated 
phenylalanine and valine levels may promote 
insulin resistance and increased risk of T2DM 
(36, 38, 39) but it is also a biomarker of dietary 
protein intake. Lower plasma isoleucine levels 
reported agreed with Moazzami et al. (40), who 
studied the effect of an 8-week low GI meal in 33 
healthy post-menopausal women. Surprisingly, 
lower isoleucine levels also reduce postprandial 
insulin demand despite similar glucose 
concentrations (28). Therefore, it is possible to 
hypothesise that insulin signalling in the skeletal 
muscle improved, increasing amino acids uptake 
in the circulation. 

Secondly, the intake of low GI foods such 
as bran or rye resulted in a perturbation in 
glycolysis metabolism and the TCA cycle (e.g. 
alpha-ketoglutaric, pyruvic acid, citric acid, 

lactate and alanine), which were examined using 
a metabolomic approach (30, 32). Similarly, 
these metabolites were associated with insulin 
sensitivity and postprandial glucose upon 
follow-up at 6.5 years (26, 27, 36). A case-cohort 
study reported a significant positive association 
between plasma lactate and alanine levels with 
insulin resistance in 1 year (39). It was suggested 
that an elevated glycaemic level stimulated 
β-cells, led to the accumulation of glycolytic and 
TCA cycle intermediates during the first phase 
and even in the second phase of insulin secretion 
(41). However, the effect of low GI MCT in the 
regulation of plasma concentration or urinary 
excretion of these metabolites and its relation 
with the postprandial insulin response remains 
to be elucidated. 

The metabolites derived from gut 
microbiota metabolism are altered after the 
consumption of low GI MCT. Low GI meal seems 
to modulate the products of colonic microbial 
fermentation by increasing the plasma short-
chain fatty acids such as acetate and butyrate 
in a postprandial state, also decreasing the 
urinary formate formation after 6-month of low 
GI and high fibre intervention (31, 42). The gut 
microbiota metabolism of choline generated 
trimethylamine (TMA) and oxidised in the liver 
to produce trimethylamine-N-oxide (TMAO). 
Betaine is one of the precursors of TMAO and 
it is rich in rye bran. A 37% increase in plasma 
TMAO concentration was observed after 4-week 
consumption of a low GI diet (43). This finding 
supports the previous observation of lower 
urinary, higher plasma betaine and related 
metabolites (N-N-dimethylglycine) after low GI 
rye bread intake (32, 40). Overall, the changes 
in the metabolites following a low GI diet may 
benefit the gut microflora.

Despite this, the intake of different types 
of bread resulted in changes in metabolite levels 
involved in tryptophan metabolism (i.e. picolinic 
acid and ribitol) (3). This observation accords 
with a 40% increase in plasma kynurenate, 
the precursor of tryptophan metabolism, 
after a 4-week study of low glycaemic load 
(GL) and high fibre meal plan (43). A higher 
concentration of ribitol is reported to reduce 
hunger and food intake, whereas picolinic acid 
is an activator of the proinflammatory function 
of macrophages. This finding suggests that 
tryptophan metabolism may be protective 
against inflammation.

These studies indicated that several 
metabolite biomarkers can be detected by 
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applying a metabolomic approach in nutritional 
intervention studies (i.e. modification with 
low GI meals) by analysing the metabolomic 
profiles derived from the comparison of 
inter and intra-individual dietary intakes. 
Furthermore, an MCT helps reveal postprandial 
metabolic responses that were not observed 
in a fasting condition. A low GI meal has been 
shown to reduce postprandial hyperglycaemia 
and the incremental benefit is similar to that 
offered by pharmacological agents such as 
alpha-glucosidase inhibitors that also target 
postprandial glycaemia. However, this review 
observed that the metabolites that underpin both 
therapies are not comparable. The metabolites 
induced by alpha-glucosidase inhibitor were 
4-methylpyrogallol derivatives such as sulfate, 
methyl and glucuronide conjugates (44, 45). 

These metabolomic results must be 
interpreted with a certain amount of caution 
because the altered metabolites may also be 
related to other dietary factors beyond GI 
modifications. Studies conducted by (29, 30) 
reported higher plasma and lower urinary 
creatine levels after consuming an egg and 
ham breakfast compared to that with a cereal 
breakfast. Creatine is mainly synthesised in the 
liver and is associated with protein consumption 
(29, 46). Similarly, higher citrate excretion may 
be due to increased citrus fruit intake, whereas 
a higher lysine content was found in eggs, meat 
and beans (29, 31). In addition, higher levels 
of the amino acid proline can be attributed to 
cheese or dairy product consumption (46) and 
higher methanol concentrations may be due to 
the higher pectin content of fruits and vegetables, 
which is metabolised by gut microflora (30).

The differences in the metabolites 
analysed from blood plasma or urine sample 
should be discussed. The urine sample 
contained predominantly low molecular weight 
metabolites, whereas blood plasma contained 
low and high molecular weight components 
such as lipoproteins (47). Metabolomics analysis 
of plasma samples provided measurement at a 
particular time point, whereas urine metabolites 
were the outcomes of metabolism (48). Another 
confounding factor that is considered is age as 
the physiological changes occur across different 
age groups, which influences the metabolite 
levels.

The existing body of literature regarding 
postprandial metabolic perturbation following 
low GI meal modification has dealt with healthy 
individuals. However, little attention has been 

paid to the metabolic effects of low GI meals 
on patients with T2DM. It has been reported 
that there are differences in metabolites 
including carbohydrate, amino acids and 
choline-containing phospholipids between 
healthy individuals and individuals with glucose 
dysmetabolism such as impaired fasting glucose 
and T2DM (23, 24). Questions about whether 
the metabolite biomarkers induced are similar 
among healthy individuals and patients with 
T2DM remain unanswered. 

In summary, the findings provide additional 
insight into the postprandial metabolic 
response following a low GI meal. However, 
the generalisability of these biomarkers is 
subject to certain limitations. Validation of 
putative metabolic biomarkers is needed 
following a dietary intervention MCT, applying 
a metabolomic approach within several study 
design conditions and sampling strategies. 
Additionally, a lipidomic platform should 
be applied in future research to establish a 
postprandial lipidome profile following low GI 
meal consumption.

Conclusion

Overall, this review provided evidence 
for the perturbation of several postprandial 
metabolites after consuming a low GI 
meal, and it discussed these metabolites 
concerning the pathophysiology of T2DM. The 
metabolites induced in response to a low GI 
meal regulated pancreatic insulin secretion 
but further validation is warranted. Advances 
in metabolomics research allow for the 
comprehensive identification of metabolites, 
aiding in understanding the effects of particular 
stimuli on metabolic pathways; thus, it is 
possible to understand the subtle effects of 
diet on human metabolic status. In the future, 
research should focus on applying a metabolomic 
or lipidomics approach for characterising 
biomarker profiles that reflect habitual dietary 
patterns, also known as the metabotype. More 
extensive metabolomic analysis should be 
performed, targeting specific populations such 
as in T2DM patients, and in individuals with 
circadian disruption. More tremendous efforts 
in this field are required to improve the health 
status of humans in the future. 
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Figure 2. Mapping of perturbated postprandial metabolites following a low GI meal onto the metabolic pathway

Notes: Red = metabolic pathway; Blue = metabolites that were perturbated following low GI meal modification in MCT
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