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Abstract 
Background: Random Forest (RF) is a technique that optimises predictive accuracy by 

fitting an ensemble of trees to stabilise model estimates. The RF techniques were adapted into 
survival analysis to model the survival of patients with liver disease in order to identify biomarkers 
that are highly influential in patient prognostics. 

Methods: The methodology of this study begins by applying the classical Cox proportional 
hazard (Cox-PH) model and three parametric survival models (exponential, Weibull and 
lognormal) to the published dataset. The study further applied the supervised learning methods of 
Tuning Random Survival Forest (TRSF) parameters and the conditional inference Forest (Cforest) 
to optimally predict patient survival probabilities.  

Results: The efficiency of these models was compared using the Akaike information 
criteria (AIC) and integrated Brier score (IBS). The results revealed that the Cox-PH model (AIC 
= 185.7233) outperforms the three classical models. We further analysed these data to observe the 
functional relationships that exist between the patient survival function and the covariates using 
TRSF. 

Conclusion: The IBS result of the TRFS demonstrated satisfactory performance over other 
methods. Ultimately, it was observed from the TRSF results that some of the covariates contributed 
positively and negatively to patient survival prognostics. 
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Introduction 

Survival analysis is quite common in 
clinical study and some other related fields. It 
is used to study the occurrence of some events 
of subjects and time until the events occur. The 
time is known as the survival time or failure 
time at which the event of interest occurs. It 
can be measured in days, months and/or years 
depending on the type of experiment, while the 
event can be death, alive, replace and so on from 
any kind of disease, such as liver disease (1).  

There are various established classical 
modeling approaches to survival analysis as 
found in the literature. Parametric models are 
one of these and are based on specified families 

of the distributions that involve stringent and 
strict assumptions on the survival time, which 
usually simplify the experimental evidence in 
the clinical trial experiment (2–4). The second 
classical model, which is the most commonly 
used model among survival analysis techniques 
is a semiparametric model popularly known as 
the Cox proportional hazard (Cox-PH) model, 
which as developed by David Cox (5). The Cox-
PH model does not make assumptions about the 
distribution of failure time but instead makes 
assumptions on how covariates influence the 
survival time. This assumption is regarded as a 
‘proportionality hazard’ assumption, that is, the 
effect of every covariate is constant over time 
(5, 6). Additionally, the Cox-PH model does not 
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Cox-PH Model 

The common model that predicts the hazard 
function of subject i is the Cox-PH model, which 
specifies the conditional cumulative hazard 
function depending on the vector of covariates:

˄(t|X) = ˄0 (t) exp (βTX)                   (Equation 1)

where ˄0 (t) is the cumulative baseline 
hazard and β = β1, β2, ... , βK) RK

e  is the unknown 
vector regression coefficients. The coefficients 
in Equation 1 can be estimated by maximising 
the partial likelihood with a modified risk set 
and inverse probability of censoring weights 
(5). Thus, the partial likelihood and the score 
function of the model (1) are given as:
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Then, the partial likelihood score function 
is:
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Thus, the maximum partial likelihood 
estimator can be found by solving U (β) = 0.  

In what follows, we consider the 
implementation of an RSF algorithm (22, 25). 

Structure of Random Survival Forest

The RSF was designed to build many 
binary trees; however, the major aggregation 
scheme is based on a cumulative hazard function 
(CHF) described in Equation 1. The steps of this 
algorithm are as follows:

i) Draw bootstrap samples from the original 
data ntree times. For each bootstrap sample, 
this leaves approximately one-third of the 
samples out-of-bags (OOB).

ii) A survival tree is grown for each bootstrap 
sample. 

allow the direct estimation of survival times (2). 
Finally, these parametric and semiparametric 
methods were developed to investigate the 
possible relationship between the survival time 
and the various covariates. However, when 
the underlying assumptions that govern these 
techniques are not satisfied, the models may not 
yield reliable and faithful conclusion. Therefore, 
non-parametric models such as survival tree (7, 
8), Random Forest (RF) (9–13), neural network 
(14, 15) and multivariate adaptive regression 
splines (16, 17) have evolved to circumvent the 
restrictive assumption problems.  

Recently, ensemble-based approaches that 
combine both parametric and non-parametric 
models with ensemble learning techniques have 
been applied to censored data to create accurate 
and diverse base learners. Some of these 
ensemble-based approaches that are applied to 
survival trees include bagging (18, 19), boosting 
(20), RF (21–23) and the conditional inference 
Forest (Cforest) (24).

In this article, we focus on modifying 
Random Survival Forests (RSFs) by introducing 
the tuning parameter to the hyperplane of the 
trees to increase the predictive accuracy of the 
RSF. The proposed Tuning Random Survival 
Forest (TRSF) methodology extends the original 
RSF algorithm to censored data and implements 
the grid search method to obtain optimal 
parameters. 

The parameters of interest to be tuned 
are the number of variables at each split and 
the minimum number of unique observations 
needed to split a node, which will be done by 
grid search methods. More precisely, we will 
investigate the efficiency of TRSF on real-life 
data and compare our results with the classical 
methods. 

Methods

Let the observations of each subject i denote 
(Ti, δi, xi) where Ti is the observed survival time 
t for subject i, δi is the censoring index with 
value 0 if right-censored and 1 if experienced 
the event of interest, and xi is the vector of 
covariates, assuming U and C are the true time-
to-event and the true censoring time for subject i. 
Hence, the observed time Ti = min (U, C) and δi 

= I(U ≤ C) . Usually, U and C are assumed to be 
independent, that it is the true time-to-event and 
the true censoring time is independent given the 
covariates. 
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where an and Sa
2 are the sample mean and 

sample variance of ai, respectively. Therefore, 
the main function of Equation 6 is to measure 
node separation based on cut-point c. 

Ensembles of Cumulative Hazard 
Function 

When the survival reaches step (iii) in the 
algorithm, the trees are aggregated to form an 
ensemble CHF which is calculated by grouping 
the hazard estimate using terminal nodes. 
Suppose that L is the terminal node, ti,L is the 
distinct survival times, d ,t Li  is the number of 
events and R ,t Li  is the individual at risk at the 
time (ti,L). Thus, the CHF estimate for terminal 
node L is the Nelson-Aalen (26) estimator given 
by:
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All individuals within L will have the same 
CHF. For q terminal nodes in a tree, there are q 
different CHF values. To determine tL/ ^ hU  for 
an individual i with covariate xnew, drop the tree 
and the xnew  will fall into a unique terminal node, 
L Qe  CHF at L would be the CHF for individual 
i in the test sample. The bootstrap for individual 
i is: 
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where t | x*
b new/ ^ h  is the CHF for a 

particular tree. For the covariate, ensemble 
survival is defined as: 

.S t | x enew
t|x* new
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Model Performance Indices

The performance of the proposed TRSF 
is designed to rely solely on nested (double) 
cross-validation (CV). The algorithm of nested 
cross-validation (Nested CV) (27) is divided into 
two categories (inner and outer loops); the first 
category (inner loops) is used in the study to 
prevent the hyperparameter from overfitting the 
data and this is called tuning of hyperparameter 
(Gridsearch CV). The second category (outer 
loop) is referred to as prediction accuracy or 
error rate (model performance); this study 
adopted the use of the integrated Brier score 
(IBS) (28) as a predictive accuracy measure. 
Within this section, the two categories of the 
Nested CV algorithm are explained and described 
as it was used in this study. 

a) At each node of the tree, randomly select 
the square root of number of independent 
variables for splitting.

b) Using the log-rank-based splitting criteria 
described below, a node is split using 
the single covariate from step ii (a) 
that maximises the survival differences 
between daughter nodes. 

c) Repeat steps ii (a) and ii (b) until each 
terminal node contains no more than 
0.632 times the number of events.

iii) Calculate a CHF for each survival tree built. 
Aggregate the ntree trees to obtain the 
ensemble’s cumulative hazard estimate. 

Grid Search Method

The grid search method is an alternative 
method used for finding the best parameter for 
the model so that the classifier can accurately 
predict the unlabeled data. This method is 
categorised as an exhaustive method for the best 
parameter values that must each be explored, 
each by setting sort of prediction values at first. 
Then, the method will show the score value for 
each parameter value to consider which one 
will be chosen. These techniques will be applied 
to the algorithm above at step ii (a) for proper 
identification of the best parameter.

Splitting Criteria 

There are different splitting rules available 
in the literature, but we focus on using the 
log-rank-based criteria. The log-rank test for 
splitting is defined as follows:
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where N is the number of distinct event 
times ...T T T1 2 N# # #^ ^ ^h h h  in the parent node, 
is the number of an event at risk and at d ,t childi j  
time t1 in the child nodes, j = 1, 2, R ,t childi j  
is the number of individuals at risk at the time t1 
in the child nodes, and j = 1, 2 is, the number of 
individuals who are alive or dead at the time t1, 
and R R R, ,t t child t childi i i1 2= +  and . d d d, ,t t child t childi i i 21= +  
It should be noted that the absolute value of 
LR(X,c) measures the node separation and 
the best split is chosen in such a way that it 
maximises the absolute value of:
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OOB prediction the better the selected tuning of 
hyperparameters.  

Predictive Accuracy Measure (Nested CV 
Outer Loop)

The accuracy indices of the TRSF and 
other existing techniques are presented in this 
section. The predicted risk survival outcomes 
were assessed by cross-validation of the IBS 
(28). At an individual time t, the Brier score (BS) 
is the square of the difference in the observed 
survival status (i.e. 1 if uncensored at time t and 
0 if censored at time t) and the based model 
prediction of survival probability at time t. The 
estimation prediction accuracy measurement 
of the BS is given as follows; suppose M is the 
number of observations in the testing dataset, 
for time t > 0 then the inverse probability of 
censoring weighted BS is given in equation (10): 

Tuning of Hyperparameter (Nested CV 
Inner Loop)

Two major hyperparameters were 
considered to be tuned in this study and this 
included the number of variables tried at each 
node denoted as mtry in the RF package (23) 
and the maximum number of unique observation 
required to split a node (minsplit or nodesize 
in the RF package). In RF, mtry is considered a 
major and central hyperparameter to be tuned; 
therefore, the mtry was tuned in this study using 
the R syntax in the package ‘randomForestSRC’ 
(23). Next, the number of unique observations 
was used to determine the amount of observation 
to be drawn for each training tree; this process 
was also performed using the R syntax in the 
package ‘randomForestSRC.’ The optimal tuning 
of hyperparameters could then be determined 
using OOB prediction, the lower the estimated 
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for all individuals i in the testing dataset. 
Where St (t, xi) is the predicted probability of 
survival of an individual i at time t, xi is the 
covariate of individual i, yi is the number of an 

individual at risk and )G(y xi it  is the estimated 
probability of censoring. 

Additionally, the BS estimate ( )BS t_ i%  is 

time-dependent; therefore, the integration of the 
baseline to the maximum observed event time is 
necessary for the purpose of direct comparison. 
Therefore, the defined IBS estimate is provided 
in equation (11), as follows: 

1
.BS T T BS t dt

T

0

=^ ^h hZ Z#             (Equation 11)

where T is the maximum observed event 
time. 

Numerical Results and Discussion

In this section, we present an explanatory 
example that highlights the similarities and 
differences in TRSF analysis and classical 
methods. The real-life data used were from the 
Mayo Clinic trial in primary biliary cirrhosis 

(PBC) of liver transplants conducted from 1974 
to 1984. A total of 424 PBC patients referred to 
the Mayo Clinic during that 10-year period met 
eligibility criteria for the randomised placebo-
controlled trial of the drug D-penicillamine. The 
first 312 cases in the dataset participated in the 
randomised trial and contained largely complete 
data. The additional 112 cases did not participate 
in the clinical trial but consented to have basic 
measurements recorded and to be followed for 
survival. Six of those cases were lost to follow-
up shortly after diagnosis, so the data here are 
from an additional 106 cases as well as the 312 
randomised participants. A careful data cleaning 
was done on the data to remove some noise data, 
and the row with the most missing observations 
and these processes reduced the data to 312 
observations (23). The description of this dataset 
is provided in Table 1 for a better understanding 
of this real-life data. 

In this dataset, there were 16 covariates: ten 
numerical-data, two factor-data and four binary-
data. All these covariates were used in fitting the 
parametric, semi-parametric and non-parametric 
TRSF models. The results of the parametric 
models were compared with the Cox-PH model 
using AIC criteria as shown in Table 2. 
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covariates but also how these covariates are 
important to the survival of patients from the 
liver transplant. In this regard, the proposed 
RSF can account for the effect, association 
and importance of all these covariates on the 
survival of patients. The results of the tuning 
hyperparameters are presented in Table 3. 
The purpose of obtaining these results was for 
selecting the best tuning parameters. The results 
(Table 3) revealed that the best number of 
variables needed for each node was four and the 
unique observation needed for splitting a node 
was 15. These optimal results were then used to 
train our final model and the prediction accuracy 
(IBS) of the final model was then compared with 
other existing methods.

The results of the AIC shown in Table 2 
revealed that the Cox-PH model was better than 
the three fitted parametric models since its AIC 
was smaller compared with the others. Moreover, 
as pointed out, there were 16 covariates and all of 
them have been proven to influence the survival 
of a patient with liver transplant by medical 
practitioners. However, in all the parametric 
fitted models, the maximum covariates that 
influenced the survival of patients from this 
disease was five, while for the Cox-PH model, 
it was three covariates and by the virtue of the 
principle of parsimony, Cox-PH still seemed to 
be the best. Sometimes, the interest of clinical 
researchers may not only be the influential 

Table 1. Description of the liver transplant data 

Variable name Description Type of data  

Years Survival time (years ) Numerical 

Status Event (F = censored, T = death) Binary 

Treatment Treatment (DPCA, Placebo) Factor 

Age Age (years old) Numerical 

Sex Female = F and Male = M Binary 

Ascites Presence of ascites Binary

Hepatom Presence of hepatomegaly Binary

Spiders Presence of spiders Binary

Oedema Oedema (0, 0.5, 1) Factor 

Bili Serum bilirubin (mg/dL) Numerical 

Chol Serum cholesterol (mg/dL) Numerical 

Albumin Albumin (gm/dL) Numerical

Copper Urine copper (ug/day) Numerical

Alk Alkaline phosphatase (U/L) Numerical 

Sgot SGOT (U/mL) Numerical

Trig Triglycerides (mg/dL) Numerical

Platelet Platelet per cubic (mL/1000) Numerical

Protime Prothrombin time (sec) Numerical

Stage Histologic stage Factor 

Table 2. Comparison between the fitted parametric models and Cox-PH model

Methods Degree of freedom AIC

Exponential 17 427.7262

Weibull 18 417.2082

Lognormal  18 415.6323

Cox-PH 16 185.7233
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Table 4. IBS value aggregated over 2,000 boostrap 
cross-validation for the four existing 
models and TRSF

Model IBS

Reference (Kaplan and Meier)     0.059

Cox-PH model             0.046

TRSF     0.044

Cforest 0.046

RSF 0.045

Next, Table 4 presents the results of IBS for 
the TRSF, Cox-PH model, Cforest, RSF and the 
reference model (29). Here, the IBS is used to 
measure the prediction accuracy of these models 
for comparison purposes and the smaller the 
IBS the better the model. The results revealed a 
slight improvement in the predictive accuracy of 
the TRSF model over all the highlighted existing 
methods. The latter was also plotted against time 
as shown in Figure 1. 

In Figure 1, the reference model (Kaplan-
Meier) is represented by the solid line (red), the 
dashed line (blue) stands for the Cox-PH model, 
the RSF is represented by the dotted line (green), 
the dot-dash line (black) stands for Cforest and 
the TRSF is represented by a long-dash line 
(purple). It can be deduced from this figure that 
the TRSF has the lowest prediction error rate and 
therefore can be considered the best model of the 
five.

Table 3. Selected optimal tuning hyparameters

nodesize mtry error

. . .

. . .

. . .

10 13 0.2648

10 16 0.2745

15 3 0.2552

15 4 0.2396

15 5 0.2927

15 6 0.2830

15 7 0.2653

15 8 0.2999

15 9 0.2830

15 11 0.2731

15 13 0.2940

15 16 0.2635

20 5 0.2943

20 6 0.2635

. . .

. . .

. . .

Figure 1. Plot of prediction error rate against survival time

Further analysis was done on the TRSF 
model via the variable selection technique. 
The variable selection was done using variable 
importance (VIMP) and minimal depth. A 
property derived from the dependence and 

partial dependence plots to aid the interpretation 
of RSF methods for both prediction and 
information retrieved specifically in time to 
event datasets. We fit RSF on the covariates and 
then checked whether we had covariates that 
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transplant, while some contributed negatively. 
The covariates that contributed positively 
are bilirubin, age, copper, protime, platelet, 
aspartate aminotransferase, stage, alkaline 
phosphatase and triglycerides, respectively, 
while those that contributed negatively are 
ascites, serum cholesterol, sex, spiders, edema, 
hepatomegaly and serum albumin, respectively. 

contributed to the model positively or negatively. 
The results that revealed the importance and 
association of the covariates to the survival of 
patients with liver transplants are presented 
in increasing order in Table 4. The results of 
the variable importance are further presented 
graphically in Figure 2. 

We can see from Table 5 and Figure 2 
that some covariates contributed positively to 
the survival of patients who received a liver 

Table 5. Variable important of each covariate

Covariate Variable importance

Age 0.0248

Bilirunbin 0.0240

Copper 0.0098

Aspartate aminotransferase 0.0057

Platelet 0.0047

Protime 0.0038

Stage 0.0036

Hepatomegaly 0.0033

Serum cholesterol 0.0018

Alkaline phosphatase 0.0005

Ascites 0.0001

Sex -0.0002

Oedema -0.0003

Spiders -0.0008

Serum albumin -0.0020

Triglycerides -0.0022

Figure 2. Plot of VIMP 
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(TRSF). The results of the comparative study 
revealed that the tuned hyperparameters 
(TRSF) produced more accurate predictions 
compared with other existing RF methodologies 
(RSF and Cforest), including the classical 
survival methodologies considered based on the 
examined dataset. 

In addition, we introduced an RSF model 
to this dataset to account for the importance and 
association that exist between the covariates and 
patient survival. The results of TRSF revealed 
that some covariates are associated with the 
survival of patients with liver transplants and 
that these covariates include sex, oedema, 
spiders, albumin and triglycerides, while others 
do not influence the survival of patients with 

Conclusion 

In this work, we fitted three different 
parametric survival analyses to the liver 
transplant dataset and found that age, sex, 
platelets, ascites and stage influence patient 
survival after a liver transplant. Furthermore, 
the Cox-PH model was also applied to the data 
and we found comparable results to that of the 
parametric model. We used AIC to identify the 
best model among the classical fitted models; 
interestingly, the Cox-PH model was identified as 
the best model. 

The results of this study indicate that it 
is fitting to compare the RF methodologies 
(RSF and Cforest) with tuned hyperparameters 

in the risk of having PBC with a lower albumin 
level (HR = 0.47; 95% CI = 0.27, 0.81) and 
significantly associated with the time to PBC 
(P-value = 0.007 < 0.05). Other covariates such 
as sex, ascites, hepatic, spider, oedema, bilirubin, 
protime and stages have increasing HRs of time 
to PBC, while copper, alkaline phosphatase, ast 
trig and platelets have constant HR over time of 
PBC. 

In order to shed more light on the effect of 
the covariates associated with time to the PBC, 
hazard ratio (HR), 95% confidence interval (CI) 
and P-values of these variables are presented in 
Figure 3. The box in the figure represents HR, 
the horizontal bars that extend from the lower 
to the upper limits are the 95% CI of the HR 
estimates and the last column represents the 
P-values of the various covariates, respectively. 
The results revealed that there was a decrease 

Figure 3. A Forest plot showing HR, 95% CI and P-values associated with variables considered in  
the analyses with time to the PBC of the liver transplant as the dependent variable
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liver disease. Finally, we compared RSF with the 
Cox-PH model using IBS and found that TRSF 
performs better than any other classical model.
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