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Introduction

Parkinson’s disease (PD) is a progressive 
and irremediable neurodegenerative movement 
disorder primarily incident in older population 
(1). The Global Burden of Disease study of 2016 
have reported PD as the leading neurological 
movement disorder with a high incidence. From 
1990 to 2015, over six million people developed 
PD and it is anticipated that by the year 2040, 
this number will double (2). Previous studies 
have shown that factors such as increasing 
industrialisation, increasing longevity, and 
decreasing smoking rates could further increase 
the incidence of PD, leading to increased 

morbidity and mortality (2). PD negatively 
affects the quality of life for both patients and 
their families and adds to significant economic 
and institutional costs on patients’ families and 
the society in general (3).

The precise aetiology of PD is still 
obscure, however, it is believed to be caused 
by a complex interplay between mitochondrial 
dysfunction, oxidative stress, apoptotic 
cell death, cellular protein aggregation and 
misfolding, neuroinflammation, excitotoxicity, 
loss of trophic factors and promotion of other 
cell death pathways leading to a degeneration 
of dopaminergic nigrostriatal neurons in the 
brain (4). The core clinical features seen in 
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Abstract
Today, Parkinson’s disease (PD) is the foremost neurological disorder all across the 

globe. In the quest for a novel therapeutic agent for PD with a multimodal mechanism of action 
and relatively better safety profile, natural flavonoids are now receiving greater attention as 
a potential source of neuroprotection. Vitexin have been shown to exhibit diverse biological 
benefits in various disease conditions, including PD. It exerts its anti-oxidative property in PD 
patients by either directly scavenging reactive oxygen species (ROS) or by upregulating the 
expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhancing the activities 
of antioxidant enzymes. Also, vitexin activates the ERK1/1 and phosphatidyl inositol-3 kinase/
Akt (PI3K/Akt) pro-survival signalling pathway, which upregulates the release of anti-apoptotic 
proteins and downregulates the expression of pro-apoptotic proteins. It could be antagonistic 
to protein misfolding and aggregation. Studies have shown that it can also act as an inhibitor of 
monoamine oxidase B (MAO-B) enzyme, thereby increasing striatal dopamine levels, and hence, 
restoring the behavioural deficit in experimental PD models. Such promising pharmacological 
potential of vitexin could be a game-changer in devising novel therapeutic strategies against PD. 
This review discusses the chemistry, properties, sources, bioavailability and safety profile of 
vitexin. The possible molecular mechanisms underlying the neuroprotective action of vitexin in the 
pathogenesis of PD alongside its therapeutic potential is also discussed.
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flavonoid types have been isolated from natural 
sources (12). Generally, flavonoids have low 
molecular weight with a 15 carbon skeleton and 
2 benzene rings linked via a heterocyclic pyran 
ring (13). Based on the oxidation state and the 
presence of sugar moiety attached to carbon 
(C-glycosides) or hydroxyl (O-glycosides) on the 
basic flavonoid structure (aglycone), flavonoids 
are classified into neoflavonoids, flavonols, 
flavanals or catechins, flavanonols, isoflavones, 
anthrocyanins, flavonones and flavones (13). 
These groups of flavonoids show diverse 
biological functions, however, the flavones are 
the most extensively studied group because of 
their promising biological properties observed in 
many in vivo and in vitro studies (14).

The presence of double bond between 
C2 and C3 flavonoid skeleton and a ketone in 
position 4 of the ring distinguishes flavones 
from other flavonoid types (15). The C-glycoside 
flavones exhibit more resistance and stability 
to enzymatic, acidic and alkaline hydrolysis 
compared to the O-glycoside flavones; the 
diverse biological activities of C-glycoside 
flavones are attributed to their higher 
stability (16). Flavones primarily exhibit anti-
inflammatory, antioxidative, antiviral and anti-
carcinogenic properties, among others, mediated 
by their interplay with many key enzymes and 
signalling cascades involving cytokines and 
regulatory transcription factors (17). Though 
flavones show promising results in preclinical 
studies, their bioavailability, toxicological profile 
and clinical efficacy in human subjects still need 
to be explored thoroughly before use (18). 

The naturally occurring flavones are 
apigenin, luteolin and chrysin and are commonly 
found in the fruit skin, red wine, buckwheat, red 
pepper and tomato skin, which we inadvertently 
consume in our diet (19). Studies have reported 
some variations in the daily average intake of 
flavones across different cohorts, including 
1.35 mg/d in American women (20), 3.05 mg/d 
in Chinese female adolescents (21) and 4.85 
mg/d in European adults (22). The apigenin 
flavone is the most remarkably explored 
natural bioactive flavone-type molecule by 
researches because of its promising therapeutic 
functions (23). The primary constituents of 
apigenin flavones are glycosylated apigenin, 
vitexin, apiin, isovitexin and rhoifolin (24). 
Vitexin, c-glycosylated apigenin is now gaining 
considerable attention from researchers as a 
result of its multi-modal mechanisms of action 
and diverse biological advantages in different 

PD patients include tremor, bradykinesia, 
rigidity and postural instability (5). With 
progression of the disease, PD patients also 
exhibit non-motor symptoms, including 
dementia, dysautonomia depression, anxiety, 
somnolence, attention deficit, hyposmia and 
restless leg syndrome (6). The histopathological 
hallmarks of PD are dopaminergic neuronal loss 
in the substantia nigra pars compacta (SNpc), 
diminished dopamine content in the striatum 
and accumulation of α-synuclein (SNCA) in the 
form of Lewy bodies (LB) in the striatum (7). 
At present, the approved and commonly used 
anti-PD drugs, such as L-DOPA (a dopamine 
precursor) and selegiline or rasagiline 
(a monoamine oxidase inhibitor), only provide 
symptomatic relief (2) and have been linked 
with adverse effects, such as compulsive and 
impulsive behaviour, dementia, depression and 
dyskinesia, after long-term administration (6). 
Studies have reported that none of the approved 
anti-PD drugs can effectively treat the disease 
because of the singleton pathway characteristics 
they exhibit while attacking the complex PD 
processes (6). Therefore, any drug that acts on 
only one pathway or target is unlikely to tone 
down the composite patho-aetiological cascade 
that leads to PD. Thus, a drug approach with 
a multi-modal mechanism of action and high 
safety profile will provide optimum treatment 
benefits compared to the current therapeutic 
strategies (8).

Natural pharmaceutical products are 
now receiving greater attention as a source of 
neuroprotective drugs as they can maintain 
normal cellular interaction in the brain and 
reduce the loss of neuronal functions in 
pathological circumstances (9). In the field of PD 
research, natural plant polyphenolic compounds 
have now gained considerable interest because 
of their potential multiple mechanisms of action, 
such as the inhibition of protein aggregation and 
misfolding, antioxidative and anti-inflammatory 
properties, the modulatory effect on apoptosis 
and cell survival, effects on cell cycle genes as 
well as signalling pathways and their relatively 
low toxicity (8). In this context, flavonoids, 
a class of polyphenols derived from plant 
products and ubiquitously found in the human 
diet, act as a promising candidate for anti-
parkinsonism (10). Flavonoids are commonly 
found in vegetables, fruits, seeds, grains, tea, 
nuts and traditional medicinal herbs (11), and the 
recommended daily dietary intake of flavonoids 
is 50 mg–800 mg (1). Till date, more than 6,000 
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MHz, respectively. The seven hydroxyl (OH) 
groups present in vitexin are said to account for 
its strong biological effects. Studies have shown 
that it is the O-di-hydroxyl structure present 
in the vitexin ring that contributes to its radical 
scavenging potential (29). The C-8 glucoside 
present in vitexin is responsible for the decrease 
in its bond dissociation enthalpy, thus adding to 
its radical scavenging property (27). The stable 
radical order in vitexin has been reported as 
4’-OH>7-OH N>5-OH, which is responsible for 
its potent antioxidant property (30). Vitexin 
has a planar structure with C-O-C bond angle 
as 120.9°, C-O bond length as 1.376 Å and the 
dihedral angle as 179.2° (31). Vitexin occurs as 
a yellow crystalline solid in its pure form with 
greater than 95% purity.

Yu et al. (32) isolated 2.1 mg vitexin from 
100 mg of ethyl acetate extract of Trollius 
chinensis Bunge with a 96% purity using high-
speed counter-current chromatography. In a 
similar study conducted by Xue et al. (33), 
vitexin with 99% purity was obtained from the 
Crataegus pinnatifida (C. pinnatifida) leaves 
using high-performance liquid chromatography 
(HPLC). In aqueous extract and commercial 
products of Andean Passiflora species, 
Sepúlveda et al. (34) also obtained vitexin with 
99% purity using HPLC. Similarly, in another 
study, 0.5 g vitexin was obtained from the leaves 
of C. pinnatifida. var major with a purity of 
greater than 99% using HPLC, and its structure 
was fully characterised using H-NMR and 
C-NMR (35). Vitexin has a poor water solubility 
(7.6172 µg/mL), which limits its dissolution, and 
thus, accounts for its poor bioavailability (36). 
To increase its solubility, vitexin is dissolved 
in organic solvents, such as dimethyl sulfoxide 
(DMSO) and dimethylformamide (37). Carrier 
molecules, including carbon nano powder (36), 
self-micro emulsifying delivery system (38), 
Solutol HS 15 and polymeric micelles of Pluronic 
P123 (39), have been previously used to increase 
the efficacy of vitexin. In aqueous buffers, vitexin 
is sparingly soluble, and to achieve maximum 
solubility, it should be dissolved in DMSO first 
before diluting with a buffer of choice: 0.5 mg/
mL vitexin in a 1:1 solution of DMSO: phosphate 
buffered saline (PBS) at pH of 7.2. 

Vitexin is unstable at room temperature 
and should be stored at −20 °C. For use in the 
experiments, it is recommended that aqueous 
vitexin solution should not be stored for 
more than one day (37). In terms of stability 
in analytical solution, Raghu and Agrawal 

disease conditions, including neurodegenerative 
diseases (25). Extensive literature search has 
revealed that most of the reviews discussed the 
neuroprotective effects of general flavonoids 
in neurodegenerative diseases (26). However, 
a recent review by Angelopoulou et al. (1) 
specifically discussed the neuroprotective 
potential of chrysin, a flavone, in PD patients. To 
the best of our knowledge, no review has focused 
specifically on the potential neuroprotective 
properties of vitexin in PD patients. Even though 
this area is still in its nascent stage, the few 
available studies of vitexin in PD models have 
shown a glimmer of hope for PD patients. 

Therefore, to fill the lacuna in knowledge, 
this review discusses the chemistry, properties, 
sources, bioavailability and safety profile 
of vitexin to provide a reference for future 
preclinical and clinical PD studies. The possible 
mechanism of action and therapeutic potential 
of this important nutraceutical agent in PD 
pathogenesis is also elucidated to promote its 
clinical application. The literature used in this 
review was collected from credible scientific 
databases, such as ScienceDirect, Scopus, 
PubMed and Google Scholar, using the relevant 
search keywords, including Parkinson’s disease, 
vitexin, neuroprotection, flavonoids and flavones.

Chemistry and Properties of Vitexin

The scientific name of vitexin is  
5,7-dihydroxy-2-(4-hydroxyphenyl)-8-{(2S,3R,4R, 
5S,6R)-3,4,5-trihydroxy-6- (hydroxymethyl) oxan 
-2-yl} chromen-4-one). It is also known with 
other names, including 4,5,7-trihdroxyflavone, 
8-C-glucosylapegenin, apigenin 8-c-glucoside 
and orientoside (Chemspider.com). Some of 
the derivatives of vitexin are isovitexin, vitexin-
2-O-rhamnoside (VOR), rhamnopyranosyl-
vitexin, vitexin-2-O-xyloside (VOX) and 
methylvitexin (isoembigenin) (27). Its empirical 
formula is C21H20O10 and the molecular weight is  
432.38 g/mol. 

As shown in the chemical structure 
below (Figure 1), vitexin contains an apigenin 
moiety: the 5,7-dihydroxyl group at A-ring, the 
4’-hydroxyl group at B-ring, and the 2,3-double 
bond in conjugation with a 4-oxo group. The 
chemical composition on vitexin structure was 
confirmed previously by Guimarães et al. (28) 
through carbon-nuclear magnetic resonance 
(C-NMR) and hydrogen-nuclear magnetic 
resonance (H-NMR) analyses of Serjania 
erecta leaves with the aid of a Bruker DXP-300 
spectrometer that operates at 125 MHz and 500 
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elucidate its precise correlation with health 
outcomes. Some of the previous reports on 
daily dietary intake of flavones were directed 
specifically on apigenin. For example, Lefort 
and Blay (53) reported that the estimated daily 
consumption of apigenin in humans is between 
0 mg and 18 mg. The average apigenin intake 
is 3 ± 1 mg/day for European cohort (54), 
4.23 mg/day for Chinese cohort (55), 0.13 mg/
day–1.35 mg/day for American middle-aged 
and elderly women (56) and 0.45 mg/day for 
Australian adults (57). However, there is a dearth 
of documented reports addressing explicitly 
recommended dietary intake of vitexin (37). 
There is a strong need to research the daily 
intake of vitexin so that its biological health 
effects can fully be appreciated. 

The therapeutic potential of vitexin like 
any natural product is dependent on important 
factors, like bioavailability and probable in 
vivo cellular and target tissue concentrations. 
According to Peng et al. (18), poor absorption, 
broad metabolism and speedy clearance of 
vitexin and its metabolite in the gut is the cause 
of its poor bioavailability. In another study by 
Zu et al. (36), vitexin was rapidly eliminated 
from the blood as a result of poor solubility 
associated with impaired drug bioavailability 
(36). In another study by Liang et al. (58), 
vitexin rhamnoside was eliminated with 1.07 
± 0.26 L/h/kg as the systemic clearance, 0.72 
± 0.15 h as the half-life, 1.09 ± 0.22 L/kg as 
the volume of distribution and 0.92 ± 0.14 h as 
the time to maximum plasma concentration 
following intravenous administration, leading to 
its low bioavailability. Xue et al. (33) obtained 
94%, 30% and 5%, as the intestinal, gastric and 
hepatic first-pass effects, respectively, leading 
to the low bioavailability of vitexin. However, 
studies have suggested that the use of liposomes, 
nanoparticles and micelles as drug delivery 
systems could enhance vitexin bioavailability 
in in vitro (59). Thilakarathna and Rupasinghe 
(60) suggested that another way of increasing 
the bioavailability of flavonoid is via food 
supplements. 

Generally, flavonoids have not been linked 
with any adverse health effect and are generally 
considered to be beneficial (37). The apigenin 
flavone is generally known for their low toxicity 
(24). Furthermore, Choo et al. (41) observed no 
signs of vitexin toxicity at the highest dose of 
2 g/kg administered orally to normoglycaemic 
mice and induced diabetic rats. In an in vitro 
study of F. deltoidea methanol extract, which is 

(40), concluded that vitexin standard and 
sample preparation is stable for up to 24 h 
with percentage difference as 0.8% and 1.8%, 
respectively, at room temperature (25 °C). The 
ultraviolet-visible (UV) spectroscopy value of 
vitexin is UV cmax nm: 215, 270 and 332. Yu et 
al. (32) obtained UV (MeOH) cmax at 235 nm, 
269 nm and 335 nm as the spectrophotometric 
value of vitexin extracted from Trollius chinensis 
Bunge using a high-speed counter-current 
chromatography. The maximum spectral 
wavelength of vitexin isolated from leaves 
extracts of Justicia gendarussa plant was 335 
nm (40).

Figure 1. Chemical structure of vitexin

Vitexin: Sources, Bioavailability and 
Safety Profile 

Vitexin is found in the leaves, fruits, flowers 
and barks of many medicinal plant species, such 
as Ficus deltoidea (41), Trollius chenensis (42); 
Spirodela polyrhiza (43), Acer palmatum (44), 
Mung bean (45), hawthorn (46), buckwheat 
(47), Parkinsonian aculeate (48) and Passiflora 
incarnate (49). A study has shown that hawthorn 
leaves provides the richest source of vitexin 
(29). The concentration of vitexin in some of 
the species of hawthorn has been reported by 
previous studies as follows: 

i) C. cuneate leaves: 0.1905 mg/g–0.5616 
mg/g (50) 

ii) C. huphenesis fruit: 0.33 mg/g–1.08 mg/g 
(50)

iii) C. microphylla leaves: 0.034 mg/g (51) 

iv) C. pinnatifida fruits and leaves: 0.028 
mg/g–1.30 mg/g and 0.22 mg/g–
9.53 mg/g, respectively (52) 

v) C. sanguinea fruits 0.38 mg/g (51)

Since vitexin is ubiquitous in many dietary 
plants that we consume inadvertently, the 
estimation of its daily intake is important to 
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anti-microbial, cardio-protective, hepato-
protective and fat modulatory properties, among 
others (29). 

Antioxidant Property of Vitexin

Oxidative stress is a state of disequilibrium 
between reactive oxygen species (ROS), such 
as the free radicals, and the biological defence 
antioxidant systems, resulting in increased cell 
toxicity and physical damage to cells by lipid 
peroxidation and alteration of nucleic acids 
and proteins (64). This is one of the major 
pathogenic mechanism in virtually all the chronic 
diseases, such as cancers, metabolic diseases, 
cardiovascular and neurodegenerative diseases 
among others (23). Many in vivo and in vitro 
studies have proven the potent antioxidant 
properties of vitexin in many oxidative stress-
related diseases (65–67). The general antioxidant 
property of vitexin is mediated by its ability to 
increase cell viability via intracellular scavenging 
of ROS and malondialdehyde (MDA) levels 
(63, 68). It also ameliorates tissue damage by 
enhancing the activities of antioxidant enzymes, 
such as superoxide dismutase (SOD), catalase, 
NAD (P) H: quinone oxidoreductase-1 (NQO-
1), heme oxygenase-1 (HO-1), glutathione 
peroxidase (GPx) and glutathione reductase 
(GR), among others (64). At the molecular level, 
it has the potential to upregulate antioxidant 

believed to contain high levels of vitexin, no sign 
of toxicity was observed at a single oral gavage 
dose of 6,400 mg/kg or daily dose of 200 mg/
kg for 4 weeks (61). Rosa et al. (62), observed 
that after incubating RAW 264.7 macrophages 
for 24 h with varying concentrations of vitexin 
(25 µg/mL, 50 µg/mL and 100 µg/mL), the IC50 
of vitexin was greater than 200 µg/mL, while 
doxorubicin, used as the positive control, showed 
IC50 of 4.8 ± 2.5 µg/mL, indicating that vitexin 
did not seem to produce cytotoxicity in in vitro. 
Vitexin was also observed to be safe with respect 
to liver damage and gastric mucosa injuries in 
mice model, as assessed over 7 days of treatment 
(63). This dependable safety profile of vitexin 
makes it a potential therapeutic candidate for 
many diseases, including PD.

Pharmacological Properties of Vitexin

In recent years, vitexin has gained 
considerable momentum as a beneficial and 
health-promoting agent because of its relatively 
better safety profile and multi-modal mechanism 
of action compared to other structurally related 
flavones (29). A plethora of studies have 
demonstrated the therapeutic potential of vitexin 
in several diseases (Figure 2). The suggested 
therapeutic potential exhibited by vitexin is 
primarily attributed to its strong antioxidant, 
anti-inflammatory, neuroprotective, anti-cancer, 

Figure 2. A schematic diagram representing vitexin’s therapeutic potential in some disease conditions. 

Notes: MI = myocardial injury; MCAO = middle cerebral artery occlusion
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and MAPK, and downregulation of the 
caspases, B-cell lymphoma 2 (Bcl-2) and 
ERK1/2

iii) Arresting the cell cycle by downregulating 
Cyclin and cyclin-dependent kinases

iv) Inhibiting angiogenesis by 
downregulating hypoxia inducible factor 
(HIF) and vascular endothelial growth 
factor (VEGF) pro-angiogenic factors

v) Suppressing cancer spread by decreasing 
MMPs as well as downregulating the 
oncogenic proteins NF-κB (76)

The potent anti-inflammatory and anti-
oxidant properties of vitexin can also affect 
multiple signalling pathways relevant to the 
metastatic growth, proliferation and progression 
(64, 76).

Cardio-Protective Property of Vitexin

Endothelial cell dysfunction, inflammation, 
oxidative damage and lipid peroxidation are 
the key pathogenic players in the development 
of various cardiovascular diseases, including 
myocardial injury, atherosclerosis, hypertension 
and cardiac myopathies, among others (29, 64). 
Some in vivo and in vitro studies have revealed 
that vitexin can attenuate these pathways, 
leading to cardiovascular disease development in 
different cardiovascular disease models (77, 78). 
Vitexin can mediate its cardio-protective effects 
by activating the AMPKα signalling pathway, 
which enhances physical stress resistance and 
cell viability by decreasing lactate dehydrogenase 
(LDH) and creatinine kinase (CK) release (79). 
In cardiac endothelial cell dysfunction, vitexin 
can upregulate cell autophagy by activating 
some pro-autophagic genes, such as Beclin-1 and 
light chain 3 II (LC3-II), and downregulating 
the p62 anti-autophagic gene (80). Vitexin 
can also exert it cardio-protective property by 
inhibiting intracellular free calcium as well 
as downregulating the calcium downstream 
effectors, such as calcineurin-nuclear factor of 
activated T cell 3 (NFATc3) and phosphorylated 
calmodulin kinase II (CaMKII) (81). 

Fat Reduction and Hepato-protective Property 
of Vitexin

Several studies have shown that the fat 
reduction property of vitexin is mediated by 
its ability to upregulate the AMPKα signalling 
pathway for controlling fat accumulation 
and downregulating CCAT/enhancer binding 
protein alpha (C/EBPα), Fas and peroxisome 

response proteins, such as 5-adenosine 
monophosphate-activated protein kinase 
(AMPK) and nuclear factor erythroid 2-related 
factor 2 (Nrf2) (27). In a nutshell, vitexin could 
be regarded as a robust antioxidant that can be 
used to prevent diseases induced by oxidative 
stress.

Anti-Inflammation Property of Vitexin

Numerous in vivo and in vitro studies 
have demonstrated that the anti-inflammatory 
activity of vitexin can be attributed to its 
ability to downregulate the pro-inflammatory 
cytokines, like tumour necrosis factor 
(TNF)-α, interleukin (IL)-1β and IL-6, and 
pro-inflammatory enzymes, such as inducible 
nitric oxide synthase (iNOS), myeloperoxidase 
(MPO), cyclooxygenase-2 (COX-2) and matrix 
metalloproteases (MMP) (62, 69, 70). At 
molecular level studies have also shown that 
vitexin can inhibit pro-inflammatory mediators 
release via inhibition of nuclear factor-kB 
(NF-kB), p38 mitogen activated protein 
kinase (MAPK), extracellular signal-regulated 
protein kinase (ERK)1/2 and c-Jun N-terminal 
kinase (JNK) signalling pathways (62, 69). 
Furthermore, vitexin also enhances the activities 
of anti-inflammatory cytokines, such as IL-4 and 
IL-10 (71, 72).

Anti-Cancer Property of Vitexin

The potent antineoplastic effects of vitexin 
in various types of cancers in organs and 
systems, such as breast cancer, liver cancer, 
colorectal cancer, lung and skin cancer, oral 
cancer, esophageal cancer, ovarian, cervical 
and prostate cancer and leukaemia has 
been demonstrated in many in vivo and in 
vitro studies (73–75). A previous study has 
demonstrated that the mechanism of protective 
action of vitexin varies depending on the 
cancer type (76). In general, vitexin can exert 
its antineoplastic action by targeting multiple 
pathways, such as: 

i) Cell growth inhibition via downregulation 
of phosphatidyl inositol-3 kinase (PI3K)/
Akt, mammalian target of rapamycin 
(mTOR) and MAPK signalling pathway

ii) Induction of apoptosis and autophagy 
through the upregulation of p53, p53-
upregulated modulator of apoptosis 
(PUMA), Bcl2-associated X protein 
(Bax), poly (ADP-ribose) polymerase 
(PARP), p-JNK, cytochrome C (CytC), 
Fas receptor-Fas ligand (Fas/FasL) 



Malays J Med Sci. 2023;30(2):8–25

www.mjms.usm.my14

Possible Molecular Mechanisms 
Underlying the Neuroprotective 
Potential of Vitexin in Parkinson’s 
Disease Pathogenesis 

Various mechanisms have been suggested 
to underlie the neuroprotective actions of 
vitexin in neurodegenerative diseases, including 
inhibiting neuroinflammation, attenuating 
oxidative stress, inhibiting abnormal protein 
aggregation, downregulation of pro-apoptotic 
proteins and upregulation of the pro-survival 
proteins, among others (96). This section shall 
dwell on the salient pharmacological properties 
of vitexin that relate to the general pathogenesis 
of neurodegenerative diseases and extrapolate 
them to the molecular mechanisms of action in 
PD pathogenesis.

Oxidative Stress in Parkinson’s Disease and 
the Protective Role of Vitexin

Oxidative stress in one of the major intrinsic 
players identified in the pathogenesis of PD (97). 
The high metabolic level coupled with the high 
levels of reducing iron and polyunsaturated fatty 
acids present in the dopaminergic neuron of PD 
patients predisposes the DA neurons to oxidative 
damage (98). The ROS that induce oxidative 
damage are mainly produced endogenously from 
many enzymatic and metabolic events in the 
body, such as during the activities of inducible 
nitric oxide synthase (iNOS), endothelial nitric 
oxide synthase (eNOS), peroxisome oxidases, 
xanthine oxidases, nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH 
oxidases), iron, inflammatory cytokines and 
cytochrome P-450, among others (97). These 
reactions promote excessive production of ROS, 
such as hydrogen peroxide (H2O2), nitric oxide 
(NO) and hydroxyl (OH) radicals (97). These 
ROS overwhelm cellular antioxidant defence 
mechanism and causes DA nigrostriatal cell 
damage in SNpc and striatum through lipid 
peroxidation, DNA damage, inflammation and 
protein modification (97).

The Nrf2 is a key transcription factor 
present in all humans and the master regulatory 
protein against oxidative damage that has been 
implicated in the pathogenesis of PD (99). 
In a physiological state, the Nrf2 is found in 
the cytosol bound to and regulated by Kelch-
like erythroid cell-derived protein with CNC 
homology (ECH)-associated protein 1 (Keap1) 
(99). However, is a stressful state, Nrf2 passively 
dissociates from Keap1; then, DJ-1 protein 
stabilises it and the Nrf2 is finally translocated 

proliferator-activated receptor gamma (PPARγ) 
protein expression levels, which promote 
lipogenesis and adipocyte differentiation (43, 
64). The hepato-protective property of vitexin 
is demonstrated by its ability to downregulate 
the liver enzymes, such as alkaline phosphate 
(ALP), aspartate transaminase (AST), alanine 
transaminase (ALT) and LDH enzymes (82). 

Anti-Microbial Property of Vitexin

Vitexin exhibits potent anti-microbial effect 
especially on a Gram-negative organism, such 
as Pseudomonas aeruginosa, Proteus mirabilis, 
Enterobacter cloacae and Escherichia coli, by 
exerting anti-biofilm effect primarily via the 
reduction of a cell adhering ability through 
inhibition of quorum-sensing regulator proteins 
and pathogen-swarming motility (29). Quílez et 
al. (83) demonstrated that the anti-Helicobacter 
pyloric effect of vitexin could be attributed to 
its ability to inhibit gastric H+/K+ ATPase, an 
enzyme that acidifies the stomach. Some studies 
have also shown that vitexin can inhibit influenza 
virus neuraminidase, an enzyme responsible for 
influenza virus replication and release within the 
host (84, 85).

Neuro-Protection Property of Vitexin

Oxidative stress injury and 
neuroinflammation are the major pathogenic 
events associated with neuronal loss in virtually 
all the disorders linked to the neurons, such as 
seizure and epilepsy (86, 87), retinal damage 
(88), hypoxic-ischaemic injury (89), depression 
(90), cognitive dysfunction (91, 92), sleep 
disorders (93) and neurodegenerative diseases 
(25, 94), among others. Vitexin can attenuate 
ROS release in neuron disorders by activating 
the antioxidant response protein Nrf2, which, 
in turn, upregulates the activities of antioxidant 
enzymes (89, 94). It also acts by inhibiting the 
NF-kB factor, which downregulates the release 
of pro-inflammatory mediators in neuronal 
disorders (95). In some neuronal disorders, 
vitexin can promote neuron survival by 
activating Nrf2, which increases the expression 
of brain-derived neurotrophic factor (BDNF) and 
enhances the antioxidant response (64). Vitexin 
has also been shown to exert its neuroprotective 
effect by activating the P13K/AKT signalling 
pathway, which upregulates the release of anti-
apoptotic genes/proteins (Bcl 2, BDNF and 
Nrf2) and downregulates the release of the pro-
apoptotic genes/proteins [caspases, Bax and 
Bclx/Bcl2-associated death promoter (Bad)] 
(89, 94).
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(NO) and perioxynitrite radical (ONOO-) 
and dampening eNOS and iNOS activities by 
upregulating antioxidant enzymes (89). In 
another study by Jiang et al. (69), vitexin was 
observed to attenuate the deleterious effect of 
ROS, LDH, malondialdehyde (MDA) and NO 
in a middle cerebral artery (MCAO)-induced 
cerebral ischaemic stroke via the mTOR/U1k1 
pathway. The pre-treatment of Neuro-2a cells 
with vitexin inhibited oxidative stress-mediated 
damage in glutamate toxicity manifested 
in Alzheimer’s disease by augmenting the 
expression of antioxidant response genes 
pathway (Nrf-2/HO-1 and NQO-1) (66). Vitexin 
was also proven to protect PC12 cells against 
hypoxia/re-oxygenation-induced injury by 
suppression of NADPH oxidase and subsequent 
reduction of ROS production (100). In another 
study by Zhang et al. (79), vitexin reduced ox-
LDL-mediated endothelial injury by inhibiting 
the production of ROS and MDA and also by 
promoting the expression of SOD. In another 
study, vitexin was observed to improve spatial 
learning and memory in diabetic rats via 
upregulation of activities of antioxidant enzymes 

into the nucleus. This nuclear translocation of 
Nrf2 is regulated via phosphorylation by ERK1/2 
and PI3k/Akt (97). The nuclear Nrf2 interacts 
with antioxidant response element (ARE) in 
the promoter region of the cytoprotective genes 
and upregulates the expressions of antioxidants 
enzymes, like SOD, catalase, HO-1, GPx, NQO-1  
and GR among others (99). It eventually 
ameliorates tissue damage.

Pre-clinical studies have demonstrated that 
natural flavonoids, such as vitexin, may confer 
substantial antioxidant effect against oxidative 
damage, which is one of the basic pathogenic 
mechanisms detected in neurodegenerative 
diseases, including PD (96). In a study conducted 
by Aseervatham et al. (87), the neuroprotective 
effect of vitexin in pilocarpine-induced epileptic 
mice was achieved by its ability to freely quench 
ROS and upregulate antioxidant enzymes 
(SOD, catalase and GSH). In a human brain 
microvascular endothelial cells (HBMEc) 
ischaemia/reperfusion injury model, vitexin 
maintained blood-brain barrier integrity and 
increased tight junctions proteins expression 
by freely scavenging intracellular nitric oxide 

Figure 3. Signalling pathway mediating vitexin antioxidant properties in PD. Vitexin enhances the expressions 
of ERK1/2 and PI3k/Akt, which, in turn, increase Nrf2 concentration. Nrf2 upregulates antioxidant 
enzymes that can attenuate tissue damage and ROS release, and hence, provides neuroprotection

Notes: ARE = antioxidant response element; Cyt P450 = cytochrome P450; ERK = extracellular signal-regulated protein kinase; 
eNOS = endothelial nitric oxide synthase; GPx = glutathione peroxidase; HO-1 = heme oxygenase-1; iNOS = inducible nitric 
oxide; Keap1 = Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1; Nrf2 = nuclear factor 
erythroid 2 related factors; NQO-1 = Quinone oxidoreductase-1; NADPH = Nicotinamide adenine dinucleotide phosphate oxidase;  
PI3K/Akt = phosphatidyl inositol-3 kinase/Akt; ROS = reactive oxygen species; SOD = superoxide dismutase; Vx = vitexin
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inflammatory cytokines, such as TNF-α, IL-1β  
and IL-6, and pro-inflammatory enzymes, 
such as iNOS, MPO, COX-2 and MMP, which 
might contribute in apoptotic cell death of 
dopaminergic neurons (101). A lot of in vivo and 
in vitro studies have demonstrated that vitexin 
can directly inhibit the NF-kB transcription 
factor, and thus, downregulate the production 
of pro-inflammatory cytokines/enzymes (62) 
and upregulate the anti-inflammatory cytokines 
(IL-4 and IL-10) (63, 102). It is also tempting 
to assume that vitexin can inhibit NF-kB 
transcription factor in PD pathogenesis, which, 
in turn, downregulates pro-inflammatory 
mediators and upregulates the anti-inflammatory 
mediators, and thereby, confers DA neuronal 
protection (Figure 4). Although, to the best 
of our knowledge, there are no documented 
studies in PD models to support this speculation, 
we strongly believe vitexin to be a promising 
candidate to protect against inflammation during 
PD pathogenesis. 

Modulatory Role of Vitexin in Apoptosis and 
Cell Survival in Parkinson’s Disease

Several flavonoids, including vitexin, 
can interact with some important cell survival 
signalling pathways, such as PI3k/Akt, ERK1/2 
and protein kinase C (PKC), and protect against 
neurodegeneration in PD (12). The activation of 

SOD and GPx (92). Based on these preclinical 
shreds of evidence, it is also speculated 
that this antioxidant property of vitexin can 
combat the oxidative stress manifested during 
the pathogenesis of PD. Vitexin can freely 
scavenge ROS in PD pathogenesis, thereby 
conferring neuroprotection (Figure 3). It can 
also act by upregulating the ERK1/1 and PI3K/
Akt signal pathway, which enhances nuclear 
translocation of Nrf2, and thus, increases 
antioxidant enzymes production, which helps in 
ameliorating neuronal tissue damage (Figure 3). 
Rahman and Kumar (59) found that vitexin-
loaded lipid nanoparticles-based therapeutics 
in 6-OHDA induced PD mice model improved 
the levels of total reactive antioxidant enzymes, 
including CAT, SOD, glutathione (GSH), GPx 
and glutathione s-transferase (GST), thereby 
providing neuroprotection. 

Neuro-Inflammation in Parkinson’s Disease 
and the Protective Role of Vitexin 

Neuroinflammatory processes also play a 
critical role in the development of PD (12). Pro-
inflammatory signals, such as infection, trauma, 
stress or exposure to environmental factors 
can directly activate microglial cells. Activated 
microglial cell via its ‘master switch’ regulatory 
transcription factor nuclear factor-kB (NF-kB) 
enhances the synthesis and release of the pro-

Figure 4. Signalling pathways mediating vitexin-mediated anti-inflammatory properties in PD

Notes: COX-2 = cyclooxygenase-2; DA = dopaminergic; IL = interleukin; iNOS = inducible nitric 
oxide synthase; MPO = myeloperoxidase; MMP = matrix metalloprotease; NF-kB = nuclear factor-kB;  
TNF-α = tumour necrosis factor-alpha
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Several flavonoids, such as quercetin, 
curcumin, apigenin, naringenin, epigallocatechin 
and chrysin, among others, have been shown 
to possess inhibitory properties against 
protein mis-folding and aggregation in 
neurodegenerative diseases, including PD (1, 12, 
105). Given the known action of some flavonoids 
as protein mis-folding and aggregation 
antagonists, it is also tempting to speculate that 
vitexin could also possess this beneficial property 
of inhibiting α-synuclein oligomerisation, 
fibrillisation and Lewy body formation, and 
could also upregulate UPS and ATGS, which thus 
confers neuroprotection in PD (Figure 6). More 
research is still warranted in this direction.

Protective Role of Vitexin in Dopamine 
Metabolism in Parkinson’s Disease

A previous study has demonstrated 
that vitexin treatment may increase striatal 
dopamine content by acting as an inhibitor 
of monoamine oxidase B (MAO-B) enzyme in 
6-hydroxy dopamine (OHDA)-induced mice 
model (59). In this scenario, vitexin dampened 
dopamine metabolism and subsequently 
increased the striatal dopamine levels. It was 
also reported that it increased the striatal levels 
of dopamine metabolites, such as homovanilic 
and 3, 4-dihydroxyphenyl acetic acid (59). These 
changes were accompanied by the enhancement 
of memory via a Morris water maze test as well 
as depression-like behaviour in tail suspension 
test (59). More studies are encouraged in this 
direction, as vitexin may write a good end in the 
story of PD.

these pathways imparts beneficial effects on cell 
survival via upregulation of anti-apoptotic genes, 
such as Bcl2, Nrf2 and BDNF and inhibition 
of pro-apoptotic proteins (caspase 3 and 9, 
Bax and Bad, among others) (Figure 5) (12).  
A recent study demonstrated that vitexin 
protected DA neurons against MPP+/MPTP-
induced neurotoxicity by upregulating the 
PI3K/Akt signalling pathway, which suppressed 
the ratio of Bax/Bcl2 and caspase-3 activities 
(94). Although we found only one study of 
this kind that investigated the neuroprotective 
role of vitexin, we believe that, combined with 
the results of other studies that demonstrated 
pro-cell survival property of flavonoids 
in neurodegenerative diseases, it can be 
hypothesised that vitexin can potentially be 
used as a potent therapeutic agent against PD. 
However, more studies are still warranted in this 
domain. 

Protein Mis-folding and Aggregation in 
Parkinson’s Disease and the Protective Role of 
Vitexin

Increase in ROS causes the production of 
alpha-synuclein monomers (97) (refer Figure 6). 
As the level of these monomers increases, they 
aggregate together to form toxic alpha-synuclein 
oligomers. Oligomers of this kind can also be 
produced by mutation of the alpha-synuclein 
gene (103). The oligomers inhibit ubiquitin-
proteasome system (UPS) and autophagy 
system (ATGS), which are responsible for 
maintaining biochemical balance in the neurons 
(104). Failure of UPS and ATGS leads to the 
development of Lewy bodies, which are one of 
the pathological hallmarks of PD (105). 

Figure 5. Pathway showing the effects of vitexin on cell survival and apoptosis in PD

Notes: Bcl2 = B-cell lymphoma 2; Bax = Bcl2-associated X protein; Bad = Bclx/Bcl2-associated 
death promoter; BDNF = brain-derived neurotrophic factor; ERK = extracellular signal-regulated 
protein kinase; Nrf2 = nuclear factor erythroid 2 related factors; PI3K/Akt = phosphatidyl 
inositol-3 kinase/Akt; PKC = protein kinase C
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Conclusion

A limited number of studies regarding 
the neuroprotective potential of vitexin in PD 
patients have been done. In the same vein, there 
is no clinical evidence regarding the protective 
role of vitexin in PD patients; however, it is 
speculated to impart immense clinical benefits. 
The promising pharmacological properties 
of vitexin, including antioxidant and anti-
inflammatory activities, the inhibitory effects 
on protein misfolding and aggregation, pro-
cell survival effects and its ability to act as an 
inhibitor of MAO-B enzyme, thereby increasing 
the dopamine levels in the brain, makes it stand 
out amid other flavonoids. Vitexin could be a 
game-changer in the novel therapeutic strategies 
of PD. However, more pre-clinical and clinical 
studies are needed to provide a robust argument 
for the possible neuroprotective potential of 
vitexin in PD patients, and hence, its clinical 
application.
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